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Abstract

Computational sound plays an important role in digital computer enter-
tainment. Traditionally, fixed set of sound data is prepared beforehand and
the system simply plays these sounds at runtime. However, as the demand
for high quality virtual experience increases, there is an increase need for
synthesizing appropriate sound interactively responding to user control at
runtime. Unfortunately, technology development in sound effects is lagging
behind compared to those for visual effects and there remain various difficul-
ties to bring interactivity in sound processing. For this reason, according to
the increases of its interactivity, it arises a problem that the efforts of the artist
for designing a lot of sounds one by one would be increased. On the other
hand, the user would be dissatisfied with a control device which has only a
limited degree of freedom due to the difficulty for manipulating the sound.
Furthermore, although it becomes important to render the sounds with appro-
priately calibrating to the individual specifications or tastes of each user, there
is a problem that it is difficult for the designer to gather such the information
beforehand. To address these problems, this thesis presents methods to bring
higher interactivity to computational sound by reducing computational cost
and user’s operation cost.

First, we discuss interactivity in the design of physically based sound. Al-
though a sound designer needs to design appropriate material properties for
physically based sound, exploration of the design space of physical parame-
ters directly is unintuitive and difficult. This thesis addresses this problem by
an example-based user interface that optimizes inversely the material from a
few example inputs of sound clips by the user. Second, we discuss interactiv-
ity in the control of singing voice synthesizer. A user needs to continuously
input lyric and melody to use singing voice synthesizer in improvisational
performance. However, inputting them both simultaneously is difficult with
standard input devices. This thesis addresses this problem by predicting la-
tent lyrics desired by the user in realtime from the input of a standard control
device. Finally, we discuss interactively in calibration of 3d spatial sound.
Although it is necessary to calibrate a spatial audio system to adopt them for
a specific user, traditional calibration procedure is expensive and time con-
suming. This thesis addresses this problem by adaptation of the system for a
specific user using an user interface that requires simple pairwise comparison
tasks.
To achieve these goals, this thesis builds a computational model behind each

task in precomputation, and exploits the model to reduce computational cost
or user’s operation cost at runtime. Specifically, in the design of physically
based sound, we present dramatically fast vibrational analysis using precom-
puted mesh simplification algorithm using machine learning and hierarchical
component mode synthesis, which allows material optimization at interactive



rate. In the control of singing voice synthesizer, we present a method to esti-
mate latent lyrics as higher DoF parameters from the input of lower DoF con-
trol device using machine learning of lyrics dataset at precomputation phase.
Finally, in the calibration of 3d spatial audio, we propose a machine learning
model that allows adaptation of the system to a specific user using individual
and non-individual factors of dataset which are extracted at precomputation.
This thesis describes the details of each method and presents the results of
numerical evaluations and empirical studies with end users. These methods,
in which the ideas are based on the improvements the interactivity of runtime
applications by user interfaces using precomputation, have generality and can
be widely applied to similar problems in other domains.
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論文要旨

インタラクティブなデジタルコンテンツにおいて音の利用は重要な役割を担う.
従来は,あらかじめ用意された限られた数のサウンドファイルを実行時にユーザ
のインタラクションに対して鳴らす,というのが一般的な音の利用方法であった.
しかし,デジタルコンテンツへのインタラクティブ性への要求が高まるにつれて,
ユーザのあらゆるインタラクションに対して適切な音で反応することが求めら
れてきているが,それを実現するための音の利用技術は映像技術と比較して非常
に遅れている. 現状,コンテンツのインタラクティブ性が高まるほど,アーティス
トにとっては多くの音をデザインする労力が増し, 一方ユーザにとっては, 限ら
れた自由度の操作手段で多くの要素を制御することが困難であること,に対する
不満が高まっていく. また,個人差のあるユーザそれぞれの知覚や好みに合わせ
てキャリブレーションした上で音をレンダリングすることの重要性が高まるが,
そうした情報をデザイナーがあらかじめ収集しておくことは困難である,という
問題もある. これらを解決するために,本論文では,コンピュータの計算コストと
ユーザの操作コスト両方を大きく軽減することによって,デジタルコンテンツに
おける音の利用のインタラクティブ性を高める手法を提案する.
第一の手法では,物理ベースのサウンドデザインについて論じる. 物理ベースの
サウンドをデザインするためには,デザイナーは適切な材質という直感的ではな
い物理的なパラメータを設定する必要があり,これは非常に困難であるという問
題がある. そこで本論文では,例示ベースのユーザインタフェースでデザイナー
の所望する音を入力することで逆に材質パラメータを最適化し,この問題を解決
する. 第二の手法では,歌声合成のリアルタイムコントロールを例に挙げる. ユー
ザは歌詞とメロディ両方を同時に入力する必要があるが,これは従来の入力デバ
イスでは非常に困難である. 本論文では,従来通りの入力デバイスからの入力か
ら,ユーザの想定した歌詞を,リアルタイム予測をすることで,この問題を解決す
る. 第三の手法では, 3次元音響のユーザへのキャリブレーションについて挙げ
る. 3次元音響を再生するためには, ユーザに対して適切なキャリブレーション
をおこなう必要があるが,従来これは特別な機材や膨大な時間が必要であり困難
であった. そこで本論文では簡単な比較タスクのみによるユーザインタフェース
でシステムの個人適応をおこない,この問題を解決する.
これらを実現するために,本論文では,事前計算によってこれらのタスクを表現
する計算モデルを構築することで,実行時のコンピュータの計算コストやユーザ
の操作コストを大幅に軽減するアルゴリズムを提案する. 具体的には,物理ベー
スサウンドのデザインをするために,事前の機械学習によるメッシュ簡略化と階
層的モーダル分解を利用した高速な振動解析を提案し,インタラクティブな速度
での材質最適化を可能にする. また,歌声合成のリアルタイム演奏を可能にする
ために,歌詞データを事前に機械学習しておくことによって,低自由度の入力から
の高次情報のリアルタイム予測をおこなう. さらに 3次元音響のユーザへのキャ
リブレーションをおこなうために,事前にデータセットから個人性と非個人性を
分離して個人適応に利用することのできる機械学習モデルを提案する. 本論文で
は, それぞれの手法について詳しく述べるとともに, 数値実験やユーザスタディ
によってその有効性を実証する. 本論文で提案しているコンピュータによる事前
計算を利用したユーザインタフェースによって,アプリケーション実行時のイン
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タラクティブ性を高める手法は,広く他の分野にも応用することが可能である.
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Chapter 1

Introduction

Computational sound plays an important role in digital computer enter-
tainment. Traditionally, fixed set of sound data is prepared beforehand and
the system simply plays these sounds at runtime. However, as the demand
for high quality virtual experience, there is an increase need for synthesizing
appropriate sound interactively responding to user control at runtime. Un-
fortunately, technology development in sound effects is lagging behind com-
pared to those for visual effects and there remain various difficulties to bring
interactivity in sound processing. In this thesis, to improve the interactivity
of computational sound and allow to use computational sounds techniques
in real scene, we discuss methods for addressing these problems from three
aspects of computational sound production: Design, Control, and Calibration
(Figure 1.1).

1.1 Background
In this section, we describe the background of the problems addressed

in this thesis. Specifically, this thesis treats three significant problems in
computational sound: physically based sound design, High DoFs parameter
control of singing voice synthesizer, and calibration of 3D audio spatialization
for a specific user.

First, for designing computational sound, we need to prepare appropriate
sounds for each user’s interaction. For example, in VR game, a player interacts
with various object in various way. The player would expect different sounds
by different interactions. However, to achieve such interactions, traditional
sound design procedure requires a large efforts of the artist for designing a
lot of sounds one by one. This is impractical in actual scene. As a result,
this limitation makes the virtual experience of sounds to be quite limited.
As a solution for this problem, physically-based sound synthesis techniques
known as sound rendering [104] have been proposed by the graphics com-
munity in the last decade. These methods reduce the effort of manipulating a
large number of audio samples for sound designers. However, although input
parameter for these techniques is the material distribution inside the model,
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3D audio spatialization
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Design
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HMM of lyrics/melody

Neural network with personalization weight
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Figure 1.1: The goal of this thesis is three target tasks in computational sound
to be capable to design, control, and calibration by proposing novel user
interfaces using precomputation method.

designing the internal material distribution properly so that the system pro-
duces a specific sound as a result of physical simulation is difficult even for
professional designers.

Second, for controlling computational sound by a user, we need to ma-
nipulate a large set of parameters in realtime. However, the user would be
dissatisfied with a control device which has only a limited degree of freedoms
(DoFs) due to the difficulty for manipulating the sound. As an example of
computational sound that requires to manipulate such many parameters in
realtime, we focus on a singing voice synthesizer [67] in this thesis. To control
a singing voice synthesizer in realtime, we need to input lyrics and melodies
simultaneously. Generally, this is quite difficult because a song lyric has large
DoFs compared to standard input devices (e.g., piano keyboard, QWERTY
keyboard).

Finally, we need to calibrate the sound rendering system for each user.
Although it becomes important to render the sounds with appropriately cali-
brating to the individual specifications or tastes of each user, there is a problem
that it is difficult for the designer to gather such the information beforehand.
Specifically, calibrating 3D audio spatialization for each user is an important is-
sue. The human auditory system perceives the directions of incoming sounds
using both ears. According to the direction from which a sound arrives to the
head, an arrival time difference to the left and right ears can be determined.
In addition, the sound is intricately diffracted by the shape of the person’s
head and ears. This diffraction effect depends on the frequency and incoming
direction of the sound. Therefore, the spectrums of the sounds that arrive at
each ear are modified. We can recognize the localization of the sound by these
sound modifications. These two-channel transforms of the spectrums can be
represented as finite impulse response filters and are called human-related
transfer functions (HRTFs). Because of this, three-dimensional (3D) spatial-
ization of sounds in virtual environments (e.g., VR and games) requires HRTFs
to reproduce incoming sounds from various directions using a two-channel
headphones. However, HRTFs are highly specific to individuals because they
depend considerably on the shape of the user’s ears and head. We know that
inappropriate HRTFs can lead to improper localization of the sound source
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accompanied by an unexpected equalization of the timbre. Because of this, we
must essentially measure the specific HRTF for each user. The measurement
procedure requires special equipment, including an anechoic chamber, as well
as time-consuming and tedious efforts of the user. Thus, using specific HRTFs
for each end user has been impractical.

1.2 Contributions
To address the issues described above, this thesis presents methods to bring
higher interactivity to computational sound by reducing computational cost
and user’s operation cost. First, we discuss interactivity in the design of phys-
ically based sound. Although a sound designer needs to design appropriate
material properties for physically based sound, the exploration of the design
space of physical parameters directly is unintuitive and difficult. This the-
sis addresses this problem by inversely optimizing the material from a few
example inputs of sound clips by the user. Second, we discuss interactivity
in the control of a singing voice synthesizer. A user needs to continuously
input lyric and melody to use a singing voice synthesizer in improvisational
performance. However, inputting both parameters simultaneously is difficult
with standard low DoFs input devices. This thesis addresses this problem
by predicting latent lyrics desired by the user in realtime from the input of a
standard control device. Finally, we discuss interactively in calibration of 3d
spatial sound. Although it is necessary to calibrate a spatial audio system for
a specific user, traditional calibration procedure is expensive and time con-
suming. This thesis addresses this problem by adaptation of the system for a
specific user using simple pairwise comparison tasks.

To achieve these goals, this thesis builds a computational model behind
each task in precomputation, and exploits the model to reduce computational
cost or user’s operation cost at runtime. Specifically, in the design of physically
based sound, we present a material optimization method for example-based
framework, and a fast vibrational analysis using precomputed mesh simpli-
fication algorithm using machine learning and hierarchical component mode
synthesis. This allows practical workflow of physically-based sound design.
In the control of singing voice synthesizer, we present a method to estimate
latent lyrics as higher DoF parameters from the input of lower DoF control
device using machine learning of lyrics dataset at precomputation phase. Fi-
nally, in the calibration of 3d spatial audio, we propose a machine learning
model that allows adaptation of the system to a specific user using individual
and non-individual factors of dataset which are extracted at precomputation.
These methods, that improves the interactivity of applications at runtime with
precomputation, have generality and can be widely applied to similar prob-
lems in other domains.
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1.3 Outline
In this dissertation, we introduce three user interfaces using precomputation to
reduce the computational cost or user’s operation cost for achieving interactive
sound design, control, and calibration as follows.

First, we propose an example based framework for designing physically
based sound of a 3D model. Our method enables the user to design the sound
of an object, which can respond various user’s interaction, without directly
specifying the physical parameters. The user first provides a 3D surface model
to the system as input. Next, the user selects a few sample positions on the
model surface, and assigns corresponding sound clips that define the target
sounds to be rendered when the positions are struck. The system then op-
timizes the material distribution inside the model so that physically-based
sound simulations yield the expected sounds. This is similar to the tradi-
tional sound design procedure and the designer does not need to learn new
skills for designing physically based sound. However, modal analysis that
is required for obtaining the vibrational property of the object at an iteration
in our optimization is a prohibitively expensive. To address this, we intro-
duce a dramatically fast vibrational analysis method by using precomputed
mesh simplification algorithm using machine learning and hierarchical com-
ponent mode synthesis (HCMS). The mesh simplification algorithm learns
accuracy preserving fine to coarse mapping of finite element mesh at precom-
putation phase, and uses it as online mesh simplify function at runtime. On
the other hand, the HCMS decomposes the finite element mesh into many
computationally-light subdomains based on precomputed mesh segmenta-
tion, and merges them. In these methods, we reduces the user’s design cost
for improving the interactivity of computational sound (Figure 1.1: Top).

Second, to control a large set of parameters of a singing voice synthesizer
in realtime, we present a method to estimate latent lyrics from the input of
lower DoFs control device using machine learning of lyrics dataset at pre-
computation phase. This allows the user to control higher DoFs parameters
(in singing voice synthesizer, lyrics and melodies of a song) with lower DoFs
input devices (e.g., piano keyboard). At the performance step, the user si-
multaneously inputs vowel sequences using a vowel keyboard and melodies
using a standard musical keyboard. The system estimates the plausible lyrics
from the vowel sequences and synthesizes singing voice sounds. Note that
the system does not use a melody sequence for estimation. Specifically, our
system automatically finds a portion of the predefined lyrics whose vowel
sequence matches well with the vowel sequence being input by the player.
We use a Hidden Markov model (HMM) for this vowel sequences to lyrics
alignment. This enables realtime control of a singing voice synthesizer using
a standard piano keyboard. Our system also allows the user to modify the
melodies of a song freely and to pick an arbitrary portion of predefined lyrics
during a live performance. In this method, we reduce the user’s operation
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cost for improving the interactivity of sound control (Figure 1.1: Middle).
Finally, to calibrate 3D audio spatialization in a virtual environment for

a specific user, we present a machine learning model that allows adaptation
of the system to a specific user using individual and non-individual factors
of dataset which are extracted at precomputation. Our algorithm requires
neither special equipment nor tedious measurement procedures. The user
only needs to provide several feedbacks rating A or B pairwise comparisons
of test signals provided by the system based on his or her individual per-
ceptions during calibration. Our algorithm uses a novel adaptive variational
AutoEncoder[71, 112] trained with a publicly available HRTFs data set at pre-
computation phase. During training, it decomposes HRTFs in the data set into
factors based on individual users and the rest. During calibration, our adap-
tive variational AutoEncoder generates individualized HRTFs for a new user
by blending several individualities with personalization weight in nonlinear
space. An advantage of this two steps algorithm is that it does not require
optimizations for all the spherical directions around the head because the
personalization weight is shared within all the directions, which has been not
addressed in previous studies. This dramatically reduces the user’s efforts at
obtaining specific HRTFs. In this method, we reduce the measurement cost for
rendering appropriate spatial sounds which is essential in highly interactive
digital content (Figure 1.1: Bottom).

1.4 Thesis Overview
The remainder of this dissertation is organized as follows:

1. In Chapter 2, we review the existing techniques for improving the run-
time interactivity by a user interface using precomputation, and clarify
the differences from our approaches. We focus on significant two motiva-
tions for using precomputation methods for a user interface: accelerating
runtime computation, and making inferences at runtime.

2. In Chapter 3, we present an example based method for designing phys-
ically based sound. We also describe a method for achieving responsive
speed for vibrational analysis of a 3D model, which enables material
optimization of the model at an interactive rate. We validate the ef-
fectiveness of the algorithm via several benchmarks and actual sound
design.

3. In Chapter 4, we discuss a method for controlling a singing voice syn-
thesizer in realtime with a standard piano keyboard. We describe how
high DoFs parameters can be controlled using low DoFs input device.
We also demonstrate the feasibility of our algorithm to control higher
DoFs parameters via several user studies.
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4. In Chapter 5, In Chapter 5, we present a fully perceptual based method
to calibrate 3D audio spatialization for a specific user. We describe
two steps machine learning technique to analyze the HRTF dataset that
extracts individual factors at precomputation phase, and how efficiently
they are optimized at runtime. We validate the effectiveness of the
algorithm via cross validations, simulations and a user study.

5. In Chapter 6, we conclude the thesis. We briefly summarize how the
interactivity of computational sound were improved by presented user
interfaces using precomputation. Finally, we describe possible directions
for future research and applications.

1.5 Publication
The following is a list of publications from which this thesis was derived:

1. Our example-based system for designing physically-based sound was
published as “Interactive Physically-Based Sound Design of 3D Model
using Material Optimization” in ACM SIGGRAPH / Eurographics Sym-
posium on Computer Animation (SCA) 2016 in Zurich, Switzerland, in
collaboration with Takeo Igarashi from the University of Tokyo.

2. Our realtime interface system for controlling singing voice synthesizer
was published as “LiVo: Sing a Song with a Vowel Keyboard” in ACM
New Interfaces for Musical Expression (NIME) 2015 in Baton Rouge,
USA, in collaboration with Takeo Igarashi from the University of Tokyo.

3. Our calibration system for optimizing 3d audio spatialization for a spe-
cific user was published as “Fully Perceptual-Based 3D Spatial Sound
Individualization with an Adaptive Variational AutoEncoder” in ACM
Transaction on Graphics (SIGGRAPH Asia) 2017 in Bangkok, Thailand,
in collaboration with Takeo Igarashi from the University of Tokyo.
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Chapter 2

Related Work

The main technical contribution of this thesis is to achieve interactive com-
putational sound applications by presenting three novel user interfaces using
precomputation algorithms. The precomputation splits the overall computa-
tions into two parts, the precomputation phase and runtime phase, so that
performance is improved at runtime. Precomputation itself is not a new ap-
proach. To provide a context for our study, this chapter reviews previous
researches related to precomputation and how these methods are used for
interactive applications including computer human interface.

There are two types of significant motivation for using precomputation
(Figure 2.1); (i) accelerating runtime computation, (ii) making inferences at
runtime. In addition, the methods used for the former motivation can be
categorized by three approaches: (a) mathematically based approach, (b)
mathematically or physically based approximation approach, and (c) machine
learning based-approximation approach. The first approach mathematically
transforms each original target problem. Thus, we can obtain exactly same
solution as the original problem with faster computation. On the other hand,
we can not obtain exact solution by the other two approaches, because these
approaches use approximations for accelerating the algorithms, but they are
usually faster than the first approach and also can be applied to the prob-
lems that is difficult to analytically transform for precomputation. In another
perspective, we call the former two approaches as model-based approach in
contrast to the last approach which can be also called as data driven approach.
Note that the first approach is beyond the scope of this thesis. The precompu-
tation method used for our first method in this thesis accelerates the runtime
computation using a combination of physically-based and machine learning-
based approximations.

On the other hand, the methods for the second motivation mostly use sev-
eral kinds of machine learning techniques. Such machine learning techniques
perform training the model by datasets at precomputation phase and make
inferences for new data using the trained model at runtime. Machine learning
is essentially equivalent to a function approximation. Once we can design
a model to train, the model can be optimized via providing a dataset. The
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Our Target

Figure 2.1: A classification of precomputation methods. Our targets in this
thesis are accelerating runtime computation by a combination of physics based
and machine learning based approximations (the first method), and making
an inference at runtime by machine learning (the second and third methods).

dataset can be both real observation and synthetic (simulation) data. Thus,
it is useful when it is difficult to determine the model parameters because
it is expensive to obtain due to some reasons (e.g., high computational cost,
blackbox function). The precomputation methods used for our second and
third methods in this thesis belong to this group of motivation and use hidden
Markov model and deep neural network model respectively. In the following
sections, we focus on two significant motivations for using precomputation as
described above.

2.1 Accelerating Runtime Computation
A significant motivation for using precomputation is to accelerate an applica-
tion at runtime. Various studies compute the expensive operations for each
target at precomputation phase, and use the results for interactive applications
at run- time. There are roughly two kinds of such precomputation approach;
model-based approach and data driven approach.

2.1.1 Model-Based Approach
Model-based approaches precompute the computationally expensive informa-
tions for accelerating runtime application based on mathematical or physics
theory. Additionally, this approach can be categorized by whether it uses
approximation or not.

Precomputation for Linear Systems

Linear system solves are required for many interactive applications (e.g.,
Poisson equation for incompressible fluid simulation [12], and the ordinary
differential equations for finite element deformable body simulation [116]).
For accelerating linear systems solves Ax = b, where A is a matrix and x, b
are vectors, there are many precomputation methods based on mathematical
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theories. For example, LU decomposition separates the matrix A into lower
triangular matrix L and upper triangular matrix U at precomputation phase.
This decomposition allows two step solves the original problem by Ly = b for
y = Ux and Ux = y for x. These two linear systems can be solved by direct
solver such as forward and backward substitution at runtime. This allows
much easier solves than the original problem. This is non-approximate solu-
tion, thus we can obtain exactly equivalent x to that of the original problem.
An another non-approximate approach is matrix preconditioning. Precondi-
tioning finds a preconditioner P of a matrix A so that P−1A has a smaller
condition number than A at precomputation phase. At runtime, we can solve
a linear system AP−1y = b for y, where y = Px, instead of solving Ax = b

for x using iterative methods. Finally, we can obtain the solution by solving
x = P−1b for x. This trick accelerates the iterative methods because the conver-
gence rate of interactive methods (e.g., conjugate gradient method, GMRES
method) usually decreases as the condition number of a matrix. This matrix
preconditioning is not an approximation, and it provides the exactly same
solution as the original system. There are many methods for computing pre-
conditioner. A popular method to find preconditioner is incomplete Cholesky
decomposition for sparse matrix that uses only non-zero entries unlike exact
Cholesky decomposition.

On the other hand, many methods use approximation for accelerating the
linear system solves. For example, there are many methods called Low-rank
approximation. These methods minimizes the cost function measures the fit
between a matrix A and an approximating matrix R (||A −R||), subject to a
constraint that the approximating matrix has reduced rank rank(R) « rank(A),
so that the dimensionality of R is reduced. Singular Value Decomposition
(SVD) is a major approach used for such reduction. SVD first decomposes the
matrixA intoA = UDVT , where the columns ofU andV consist of the left and
right singular vectors, respectively, andD is a diagonal matrix whose diagonal
entries are the singular values of A. Using these decomposed matrices, we
can reduce A by A∗ = U∗D∗V∗T , where U = [U∗U∗∗], D = diag(D∗,D∗∗),
and V = [V∗,V∗∗]. At runtime, we can decompose the original problem
into two easer problems solving D∗y = U∗T b for y and y = V∗Tx for x.
Eigen decomposition can be used for the reduction of diagonalizable matrix,
on which we focus in the first method in this thesis. It solves the problem
AU = ΩU, whereΩ is a vector in which each element represents an eigenvalue,
and U is a matrix in which each column vector is an eigenvector. The reduced
eigenvector matrix U∗ can be obtained by remaining only the eigenvectors
corresponding to larger eigenvalues. At runtime, the original problem can
be transformed into U∗TAy = U∗T b, where y = U∗x, and we first solve
this equation for y. Using y, we can obtain the approximated solution by
x∗ = U∗Ty. This transformed equation can be solved fewer computational
cost than the original problem.
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Precomputation for Interactive Visual Rendering

Model-based precomputation methods can be used for accelerating visual
rendering applications at runtime. For realistic visual rendering, simulat-
ing accurate global illumination (GI) effects such as self-shadowing, ambient
occlusion, caustics, and inter-reflections are required. However, computing
these effects is very expensive. To address this problem, Precomputed Radi-
ance Transfer (PRT) [120] approximates the light distribution around an object
as a linear combination of spherical harmonics basis. To approximate global
illumination effects and use it for interactive rendering, PRT uses precompu-
tation of the linear response of a single 3D object exposed to (low-frequency)
environmental lighting basis vectors. At runtime, using both the precomputed
data and lighting informations, PRT approximates global illumination effects
at interactive rate.

A critical limitation of PRT is that it can be applied to only static objects.
To address this, Zhong et al. [109] introduce spherical harmonic exponentia-
tion that approximates an object as a collection of various radius particles at
precomputation phase. James and Fatahalian [58] integrate physically based
deformable body simulation and global illumination by precomputation. They
prepare deformation palettes that describe the basis of possible deformations
of the object, and precompute the global illumination for each basis by sim-
ilar approach to PRT. Then, the light transfer informations are associated to
finite deformation states. At runtime, they simulate the dynamic scene of
deformable body and the global illumination simultaneously by a linear com-
bination of the precomputed palettes at an interactive rate.

Precomputation for Interactive Animation

For accelerating 3D physically based animation at runtime, there are many
reduction methods. The basic idea of reduction is to project the high-dimensional
equation of motion to a carefully chosen low-dimensional subspace to con-
struct a reduced model. It usually precomputes the basis of the deformation
of elastic object, and drives the basis at runtime for fast deformation simu-
lation. Elastic deformation of an object can be represented by the ordinary
differential equations of motion Mü +Du̇ + fint(u) = fext, where u are mesh
vertex displacements, u̇ are velocities, ü are accelerations, fint(u) and fext(u)

describe internal and external forces, and M and D are the mass and damping
matrices respectively.

A major approach for reduce this system is modal analysis [41]. Modal
analysis solves generalized eigenproblem KU = ΩMU of finite element stiff-
ness K and mass matrices where Ω and U denote eigenvalues and eigenvec-
tors at precomputation phase. These remained eigenvectors are called linear
modes. At runtime, we can simulate the deformation of an object by ap-
proximating it as a linear combination of harmonically vibrated linear modes
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instead of solving the differential equations. This allows much cheaper defor-
mation simulation than the original problem because it requires only summing
up the precomputed mode vectors.

There are two critical limitations of linear mode approximation. First, it
can not handle the object’s local deformation behaviors well unless a large
number of basis vectors are used, which in turn would cancel out the bene-
fit of acceleration. Multi-domain subspace techniques [148] provide a good
solution to this problem by partitioning the deformable object into multiple
domains and constructing reduced models for each domain independently.
Second, nonlinearity features of the deformation are lost. This causes signif-
icant artifacts when the object deforms largely. Modal warping [18] partially
addresses this problem by introucing geometrically nonlinearity (specifically,
rotation). Rotation-strain (RS) coordinates [80] also addresses this problem
that is more robust. In addition, to adding nonlinearity to subspace reduction,
Barbic and James [6] introduced a method of computing modal derivatives to
expand the subspace. While their method is based on linear modal analysis,
Yang et al. [147] use Krylov-type modes that can also be extended to capture
non-linear deformations.

Precomputation for Interactive Sound Applications

Modal analysis described in the previous subsection also can be used for
vibrational analysis of a structure because high frequency deformations is
equivalent to the vibration. This vibration is radiated into air as sound. Thus,
many physically based sound simulation uses modal analysis for precomputa-
tion, which is one of the targets in this thesis. As a direct approach of physical
sound simulation, [104] attempted to simulate a vibrating object at audio rate
(44.1kHz). However, it was impractical for interactive applications because
of its expensive computation. To address this, modal sound synthesis has
been widely adopted to simulate quasi-rigid body sounds [1, 110, 132, 155].
This uses linearized vibrational properties (modes) obtained by modal analy-
sis at precomputation phase, and at runtime, generates the sounds by a linear
combination of them. This approach releases the physically-based sound sim-
ulation from the audio rate simulation, and allows to use it for interactive
applications.

For an another example of sound application, a computation of a sound
radiation from a vibrating object is also an expensive problem. To simulate
sound radiation problem, Boundary Element Method (BEM) is widely used.
However, it is difficult to execute the overall computation of BEM at interactive
rate. To address this, Doug et al. [57, 79] approximate the sound radiation
property around an object by a collection of point sources (monopole and
dipole sound sources) by the precomputation. At runtime, they simulate the
radiation as a simply summing up the point sources at a receiver (microphone)
position. This allows interactive rate simulation of sound radiation at runtime.
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The motivation of these precomputation methods for sound applications are
accelerate the runtime computations based on physics theoretically motivated
approximations.

The precomputation method used for our first method described in this
thesis is also accelerating physically based sound simulation for an interac-
tive sound design tool. A significant problem of using modal analysis is
their expensive computational cost. Our methods allows to analyze the vi-
brational property (modal analysis) of an object extremely faster. Note that a
major difference of our method from previous approaches is that we accelerate
precomputation by precomputation. As described above, modal analysis is
based on physically theoretical approximation, and used for precomputation
because it is expensive. We accelerate this precomputation method using a
combination of different types of precomputation approaches including ma-
chine learning technique, and make such expensive precomputation method
to be executable at runtime.

2.1.2 Data Driven Approach
Many machine learning algorithms are also adopted as precomputation meth-
ods for accelerating computationally expensive applications. An advantage to
use machine learning for precomputation is to allows to replace each original
expensive problem with computationally cheaper regression function. For
example, recent deep neural network studies [46, 101] replace expensive com-
putation of global illumination with computationally cheaper functions, and
allows realistic visual rendering at interactive rate. In addition, many stud-
ies uses machine learning for interactive physical simulation. NeuroAnimator
[38] also uses neural network to approximate expensive physical simulation for
interactive computer animation. Kim et al. [68] simulate expensive cloth sim-
ulation using motion graph that is constructed by real measurement dataset.
Data driven fluid [75] accelerates expensive large fluid simulations by replac-
ing expensive physical simulation with regression forests trained by synthetic
dataset gathered at precomputation phase. Um et al. [129] also accelerate
large expensive smoothed hydrodynamics particles liquid simulation using
deep neural network.

An interesting application of accelerating physical simulation by machine
learning technique is an interactive design tool. Umetani et al. [130] present
an interactive tool for designing freeform and actually flying paper glider.
Although aero dynamic simulation is expensive, they achieve it by using
machine learning regression method based on actual measured dataset instead
of aero dynamics simulation. Nakamura et al. [99] is a similar approach for
designing freeform and actually flying bamboo-copter. They use radial basis
functions interpolation trained by actually captured flight dataset of bamboo-
copters instead of expensive aero dynamic simulation.
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2.2 Making Inferences at Runtime
Precomputation methods are deeply linked to recent exponential development
of machine learning techniques. A powerful ability of machine learning is
inference. Machine learning algorithm extracts feature parameters of dataset
at precomputation phase, and at runtime, it uses the extracted features for
classification or regression for given new input data. The motivations of the
precomputations used for our second and third methods are also to use such
high inference abilities for interactive applications. In the second method, we
predict the user’s next intent by the action sequences for realtime control user
interface. Note that this target problem requires seriously faster interaction
response than those of existing studies. In this thesis, we describe how our
machine learning model is designed for achieving such a quick response.
The third method described in this thesis employs two steps optimization for
calibrating 3D audio spatialization for a user; feature parameter extraction at
precomputation phase and interactive optimization of the extracted features
with the user for generating new data at runtime. This two steps machine
learning approach can extract the essential factors of a dataset and allows
optimization for the user efficiently in the reduced design space. This allows
to represent the feature of black box system such as human perception and
taste by reduced parameters.

In the following subsections, we describe the precomputation methods for
motivating inferences at runtime.

2.2.1 Inferences for Interactive Visual Application
There are many machine learning algorithms used for interactive visual ap-
plication. For example, support vector machine (SVM) [43] is used for image
recognition. SVM belong to the class of maximum margin classifiers. It per-
forms pattern recognition between two classes by finding a decision surface
that has maximum distance to the closest points in the training set which are
termed support vectors.

Many recent deep neural network (DNN) studies successfully identify vi-
sual objects [74, 61] in an image or a video [103]. Various DNN studies can
also generate and translate high quality images [3, 56, 81, 82]. Neural net-
work consists of multiple layers in which each layer can be represented as a
combination of linear and non-linear functions. We can use arbitrary differ-
entiable functions for these functions. DNN can be stochastically trained by
back propagation at precomputation phase. At runtime, DNN can be used for
new input data to make inferences with high generalization capability.

For designing 3D character motion, Holden et al. [44, 45] uses DNN to gen-
erate a new motion. In their system, the user can edit the character’s motion by
simply interpolating latent variables which represents the features of trained
motion dataset. This editing procedure is easier than conventional motion
manipulation (e.g., editing key frames). As a similar approach, Yumer et al.
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[153] presented 3D modeling by an AutoEncoder trained at precomputation
phase. In this system, the user can explore the intermediate shapes of trained
models by interpolating the latent variables. In addition, as a cross domain
translation, Karras et al. [65] control the facial expressions of a 3D model from
audio speech signals that allows goal oriented design of facial motion.

Such inference ability of machine learning is also useful for user interfaces
for an interactive design tool. Ribeiro and Igarashi [113] develop a sketch user
interface that progressively learns visual models of objects from user sketches,
and uses the models at the next interactive with the user. In this system, the
user can create sketch with machine by mutual cooperation. In addition, there
are various useful design tools for sketching and image retouching using
DNN; filling the holes in an image [54], sketch beautification from rough
sketch [118], colorize monochrome photo [53], and painting colors naturally
on monochrome sketch [107]. Although these algorithms largely depend on
the specifications of trained dataset, such design tools have a possibility to
augment the user’s creativity.

2.2.2 Inferences for Interactive Sound Application
Handling time series data is an important problem for sound application. For
example, an audio signal sample at a time is usually correlated with the previ-
ous time samples. Hidden Markov model (HMM) [87] is widely used for such
time series data. HMM models a system by a Markov process with unobserved
(hidden) states that assumes the current state is determined only by the previ-
ous state, and the output observation at time t is dependent only on the current
state. Given a set of training dataset, we can estimate the model parameters
(initial, transition, and observation probabilities) in HMM by two standard
approaches. If the training dataset contain both the inputs and outputs of a
process, we can perform supervised training by equating inputs to observa-
tions, and outputs to states. If only the inputs are provided in the dataset, we
use unsupervised training to guess a model that may have produced those ob-
servations. For supervised training of HMM, maximum likelihood estimation
is widely used. On the other hand, Baum-Welch algorithm [108] is used for
unsupervised training.

Many speech recognition and synthesis algorithms use HMM for modeling
human speech [126, 150]. It also can be used for beat tracking [26] and chord
detection [128] of music. HMM has an advantage that it can be trained by fewer
data than DNN. Thus, it can be used for applications in which it is difficult to
gather large training dataset. Specifically, modeling musical sessions between
human musicians and computer [86] is an example that is suited for HMM
because we can not take rehearsals so many times for making training dataset.

Neural network also can be used for time series data. Such type of neural
network is called recurrent neural network (RNN) [114]. RNN takes as their
input not just the current input example they see, but also what they perceived
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one step back in time. It is often said that RNN has memory. A layer in RNN
is represented as

ht = ψ(Wxt +Uht + b), (2.1)

where xt and ht denote the input and hidden vectors at time t respectively,
W and H are weight matrices, b is the bias vector, and ψ() is an arbitrary non-
linear function. RNN can be trained back propagation through time (BPTT)
[98]. BPTT unfolds the RNN through time to be able to back propagation.
Long short term memory (LSTM) [35], which is a variant of RNN, successfully
classify, process and predict long time series that have time lags of unknown
size and bound between important events. There are many recent studies
of speech synthesis [30], singing synthesis [11], and sound event detection
[123, 124] use LSTM instead of HMM.

Dilated convolution [133] is an another approach to treat audio signal by
neural network instead of RNN. Standard convolutional layers need either
large filters to capture a sufficient range of input sequence. However, the
computational cost increases extremely to reach a certain size of the receptive
field for the actual output. On the other hand, dilated convolution just refers
to the fact that a certain number input values is skipped when applying the
filter of a convolutional layer. This allows to capture the correlations between
long sequence data with a reasonable computational cost. This type of neural
network can be used for many sound applications including text to speech
synthesis [135] and music generation [29].
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Chapter 3

Interactive Physically-Based Sound
Design of 3D Model using Material
Optimization

3.1 Introduction
Realistic sound effects that respond to visual events in a scene significantly
enhance the user experience in virtual environments. Traditionally, sound
effect designers prepared pre-recorded and pre-edited audio samples, and
these samples were synchronized to visual events by manual tweaking (e.g.,
for feature films) or using scripts (e.g., for VR and games). However, it is
laborious to prepare appropriate audio samples for a large variety of visual
events, limiting expressiveness and variation of sound effects.

As a solution for this problem, physically-based sound synthesis tech-
niques known as sound rendering [104] have been proposed by the graphics
community in the last decade. Modal sound synthesis [1, 155] is widely
used for sound simulation of quasi-rigid bodies; it can efficiently produce
physically-plausible sounds responding to a large variation of visual events
(e.g., collision, bounce, and scratch). This method reduces the effort of ma-
nipulating a large number of audio samples for sound designers because it
does not use any pre-recorded audio sample. All sounds are automatically
triggered and rendered by physical simulation responding to visual events.
However, although input parameter for these techniques is the material distri-
bution inside the model, designing the internal material distribution properly
so that the system produces a specific sound as a result of physical simulation
is difficult even for professional designers.

To address this problem, we propose an example-based interactive design
framework for rendering the physically-based sound of a 3D model using
material optimization (Figure 3.1). Our approach enables a user to control
the timbre of modal sound synthesis easily without directly specifying the
internal material distributions. The user first provides a 3D surface model to
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Figure 3.1: The user assigns several target sounds to sample points on given
3D model as examples. The system then optimizes the material distribu-
tion inside the model so that physically-based sound simulation produces the
expected sounds. The user can check the simulated sound during the op-
timization interactively and re-assign additional target sounds to design the
desired sounding object. Finally, the system outputs embedded FEM mesh
with eigenpairs which can be used for standard physically-based sound ren-
dering pipeline.

the system as input. Next, the user selects a few sample positions on the model
surface, and assigns corresponding sound clips that define the target sounds
to be rendered when the positions are struck. The system then optimizes
the material distribution inside the model so that physically-based sound
simulations yield the expected sounds.

However, modal analysis that is required for obtaining the vibrational
property of the object at an iteration in our optimization is a prohibitively ex-
pensive. To execute the optimization at an interactive rate, we present a novel
fast approximate modal analysis method that achieves three orders of magni-
tude acceleration compared to the standard modal analysis (Figure 3.2). Our
technique consists of data-driven finite element coarsening of the mesh and
hierarchical component mode synthesis with efficient error correction. Our
data-driven online coarsening extends Chen et al.’s method [15] to handle a
large range of continuous material settings by reducing the material parameter
space, and can be evaluated with a constant cost for a large amount of datasets
using regression forests. Additionally, our highly parallelized hierarchical
component mode synthesis extends conventional methods [5] to efficiently
compute approximate solutions of modal analysis, and our error correction
algorithm efficiently improves its accuracy.
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Figure 3.2: Algorithm Overview. Our optimization algorithm consists of the
precomputation and runtime. An iteration of our optimization procedure at
runtime consists of 3 steps. First, the system computes modal analysis to obtain
the vibrational property of the object. Second, it computes the similarity score
between the simulated sounds of the object and user specified target sounds.
According to this similarity score, the system updates the material distribution
inside the object to minimize the cost.

3.2 Related Work

3.2.1 Parameter Acquisition for Modal Sound Synthesis
To determine the material parameters used in modal sound synthesis, Pai et
al. [106] and Corbett et al. [23] acquired the parameters from actually mea-
sured impact sound data, and interpolated them in auditory space. A robotic
actuated device is used to apply impulses on a real object at a large num-
ber of sample points, and map the recorded impact sounds to virtual objects.
However, the measurement procedure of such a huge number of samples for
an object and manipulating them are prohibitively expensive. FoleyAuto-
matic [132] also employed similar approach, but interpolated them in modal
space for achieving rich sound interactions. However, they also require suffi-
cient amount of samples to estimate the modal function on the surface. Same
example sound can be reused at different locations, but it causes a lack of
the sound variations when the object interacts with other objects at various
locations. This problem becomes profound when the model to be designed
has a larger scale.

To avoid measuring such a huge number of parameters for one object
from many audio clips, Lloyd et al. [83] proposed a data-driven approach to
assign the sound of an object from only one audio clip. They estimated the
modal parameters from the audio clip, and at runtime, they randomized the
mixture gains of all the tracked modes to generate imaginary varied sounds
when hitting different locations on the object. However, this method produces
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Figure 3.3: The user interface view. The left pane allows the user to assign
the target sounds for the model and preview the contact sound while the
right views represent the power spectrums of assigned sounds (green) and
the sounds when the positions the user selected are struck (red). The black
arrows on the left pane represent the positions the user assigned targe sounds.

unnatural artifacts because the sounds are not consistent with hit points.
As another approach, Ren et al. [111] proposed a method to estimate the

material specific parameter (Rayleigh damping parameters) directly instead
of modal parameters from a audio clip under the assumption of uniform
material distribution inside the object. The advantage of their approach is
that it enables the estimated material parameters to be transferred to different
shapes. However, their approach requires that the real object have exactly
the same shape as the virtual model to be estimated and should be easy to
prepare. These requirements are impractical to implement in actual scenes,
which is considered in this thesis.

On the other hand, the vibration of an object is radiated into air, and it
propagates as a sound in the space. This propagate specification which is
affected by the room shape and materials is also an important factor to design
for perceptual sound, specifically, determining material parameters of the
objects and walls in the room is the most important design factor that is similar
to vibrating objects. There are several kinds of material parameters of an object
used for sound propagation problems. A major parameter is bidirectional
reflection distribution functions that describe the reflectance of sound with
respect to the incoming and outgoing directions [36]. However, these functions
are difficult to measure in real scene. Alternatively, several algorithms have
been proposed to inversely optimize the acoustic parameters from sounds [97]
for a room that is built by primitive shapes or estimate the acoustic properties
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of real world scenes for inverse sound rendering [102, 115]. Christensen et al.
[19] uses genetic algorithm to estimate the material properties of a room so that
it matches measurements. Their motivations are similar to our approaches.
However, these methods are computationally expensive and can not be used
for interactive applications.

3.2.2 Vibrational Property Optimization
To obtain the desired vibrational property of an object, Yamasaki et al. [146]
optimized the shape and topology of an industrial structure using levelset
optimization, and controlled the several lowest eigenfrequencies. Yua et
al. [151, 152] optimized the topology of a violin’s body as specific thin shell
structure to control the mode frequencies and amplitudes (mode vectors) that
are expected to be largely contributed to the timbre. Bharaj et al. [9] optimized
the shape of a common elastic structure to control both a few mode frequen-
cies as well as their amplitudes for fabricating metal percussion instruments.
Our formulation is similar to theirs, but there are four differences. 1: We
control a much larger number of modes for dramatically changing the sound’s
timbre and sacrificing the fabrication possibility. 2: We optimize the material
distribution while maintaining the shape whereas they optimize the shape.
3: Our optimization runs at an interactive rate that is enabled by an expan-
sion of data-driven finite elements method (FEM) [15] and highly parallelized
hierarchical component mode synthesis. 4: Our objective function considers
the perceptual differences of two sounds whereas they use square distances
of frequencies and amplitudes.

3.2.3 Modal Analysis
Modal analysis is a well-studied technique in both computer graphics and
engineering. It solves the generalized eigenproblem of the finite element
stiffness and mass matrices to obtain the vibrational frequencies and the cor-
responding deformations [41]. Because modal analysis is a time-consuming
operation, it is usually used for only the precomputation phase. As some
exceptions, Umetani et al. [131] introduced 2D modal analysis into an interac-
tive design tool for percussion instrument by limiting the fundamental mode
computation. Maxwell and Bindel [90] computed quasi-3D modal analysis of
thin shell structure percussion instruments including the several overtones at
a quasi-interactive rate. We introduced 3D modal analysis of a more complex
structure into an interactive application.

Many studies focused on the improvement of the computational efficiency
of modal analysis. A powerful solution is the domain decomposition approach
called the component mode synthesis method (CMS) [51]. CMS decomposes
a large problem into many small problems of subdomains and merges them.
There are several variations of CMS according to how the boundaries between
subdomains are treated [16, 149]. The major approach is the Craig-Bamptom
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method [5] that treats the interfaces of subdomains as fixed. However, finding
an optimal division of a mesh in subdomains is non-trivial, and it should be
often undertaken manually for improving the accuracy. It requires additional
expertise and manual efforts by the user. Our approach does not distinguish
between subdomains and boundaries, and automatically decomposes it as a
hierarchical structure and merges them in parallel. In addition, we improve
the accuracy using the fast error correction algorithm, which consists of a
combination of the subspace iteration method [7] and sparse mass-Gram-
Schmidt process [147].

3.3 User Workflow
This section describes the user workflow of our interactive physically-based
sound design tool. Please see the supplemental video for an interactive demon-
stration. As seen in the screen capture shown in Figure 3.3, the user first
provides a 3D surface model as an input. The system automatically voxelizes
it and converts it into a uniform hexahedral finite element mesh, and executes
precomputations as described in the next section. Next, the user selects a ver-
tex position on the surface of the mesh using the mouse, and assigns a sound
clip to the position by a drag-and-drop operation. The sound clip defines the
sound to be rendered when the model is stuck at the position. The assigned
sound clip can be either a pre-recorded real sound (exists in the real world) or
an artificial sound (e.g., sound generated by sound synthesizer), but it needs
to be an attenuated contact-like sound (free vibrational sound caused by sin-
gle impulse. An impulse response is ideal). The system allows the user to
select multiple positions for each corresponding sound clip. After assigning
sounds, the user presses the “optimize" button, and the system optimizes the
material distribution inside the model to obtain the desired sound properties.
Finally, the system exports the optimized embedded finite element mesh for
the surface model with the eigenpairs, and the user can use it for modal sound
synthesis.

The optimization gradually progresses at an interactive rate. The system
visualizes the current material distribution inside the model by colors and
the resulting sounds when the sample positions are struck by power spec-
trums. The user also can check the sound by clicking the mouse on the mesh
surface during optimization at any time. The user can stop the optimization
procedure at an arbitrary timing, reassign another sound to a new sample
point, and restart the optimization iteratively. In this way, the user can inter-
actively design the physically-based sound for a 3D object as if it were a sound
synthesizer.

21



3.4 Algorithm Overview
Figure 3.2 shows an overview of our optimization algorithm. Our algorithm
consists of two stages: the precomputation stage and the runtime. The pre-
computation stage consists of two parts. One is precomputation for each
material set (independent of models), and it constructs regression forests for
data-driven FEM. The regression forests are used for online mesh coarsening
using data-driven FEM (§3.6.1). The other is precomputation for each input
model (independent of materials), and it involves voxelizing the model into a
hexahedral FEM mesh and computation of the eigenvectors of the volumetric
Laplacian of the mesh following [142]. The eigenvectors of the volumet-
ric Laplacian are used for material reduction (§3.5), and mesh segmentation
(§3.6.2).

At runtime, the system minimizes the perceptual difference between the
user-specified input sound and simulated sound by iterative optimization of
material distribution (§3.5). We consider vibrational property (mode frequen-
cies and amplitudes) to measure perceptual difference (§3.4). We optimized
Young’s modulus at each element of FEM, and we kept the densities and Pois-
son’s ratios constant for simplicity. At each iteration, it is necessary to execute
a modal analysis of the model to compute the resulting sound. Conventional
modal analysis solves the generalized eigenproblem of large stiffness and mass
matrices, but it is prohibitively expensive and impractical to use during iter-
ative optimization. To address this, we propose a fast approximate modal
analysis based on a combination of data-driven FEM using regression forests
(§3.6.1) and hierarchical component mode synthesis method including error
correction (§3.6.2).

3.5 Problem Formulation
When the user assigns a sound clip onto a sample position, the system extracts
the parameters of the sound’s timbre from it. An attenuated contact sound can
be parameterized by modal parameters (frequencies, amplitudes, and damp-
ings). For the details of the modal parameters, please see Appendix A. We em-
ploy Ren et al.’s technique [111] to extract these parameters from a sound clip.
We also extract the residual parameters following them. After T assignments,
the system hasN sorted mode frequencies of assigned sounds (F1, ..., FN), cor-
responding dampings (D1, ..., DN), corresponding residuals (R1, ..., RN), and
corresponding amplitudes at T sample positions (A1

1, ..., A
1
N), ..., (A

T
1 , ..., A

T
N).

We call these extracted parameters as target parameters.
For a given finite element mesh, we compute the first N mode frequencies

(f1, ..., fN) and corresponding amplitudes atT sample positions (a11, ..., a
1
N), ...,

(aT1 , ..., a
T
N) using modal analysis. The modal analysis computes a generalized

eigenproblem: KU = ΛMU , where K and M denote the stiffness and mass
matrix respectively and Λ and U denote the eigenvalues and the correspond-
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ing eigenvectors. To compute the mode amplitudes, we assume each sample
position pi (i = 1, ..., Np) is struck by a unit force impulse f pi

n which has the
inverse direction of the surface normal n at the position. Then, the k-th mode
amplitude at the position pi is represented as apik = uTk f

pi
n , where uk is the k-th

eigenvector.
Using the target frequencies F , amplitudes A and simulated parameters,

our objective function for minimizing the perceptual difference of the mode
frequencies is represented as

Ef =
1

2

N∑
i=2

(Bark(sffi)−Bark(Fi))
2, (3.1)

where Bark(f) is a function to transform the frequency to critical band rate
[bark] [158], and sf = F ′

1/f1 is the scaling factor. The objective function for
amplitudes is also obtained using the balances with other mode amplitudes
at the position:

Ea =
1

2

T∑
j=1

N∑
i=2

(
aji
ajmax

− Aj
i

Aj
max

)2

, (3.2)

where ajmax and Aj
max denote the largest amplitude at the position j of the

simulated and target’s modes respectively. These formulations are similar to
[9]; however, we use the perceptual metrics whereas they use square distances
of frequencies and amplitudes. We minimize these functions by optimizing
the Young’s modulus Ye ∈ RM at each finite element e, where M denotes the
number of the elements. Finally, our design problem is formulated as

arg min
Ye

: wfEf + waEa, subject to : Ye > 0, (3.3)

where wf and wa denote the positive weights.
Note that we do not optimize damping parameters. We instead reuse

the estimated damping from the assigned sound clips as mode-dependent
damping. This means that our damping is not spatially constant. This setting
is physically incorrect, but it makes the problem simpler.

3.6 Material Optimization
The optimization of element-wise material parameters is impractical. To re-
duce the design space of material parameters, we introduce the reduction
technique of [142]. The technique expresses the Young’s modulus as Y = Φz

using the eigenvectors of the volumetric mesh Laplacian Φ ∈ RM×m, and uses
the generalized material parameters z ∈ Rm, (m << M) for the optimization.
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Figure 3.4: Data-Driven Coarsening [Chen et al. 2015] (in 2D illustration). The
function DDFEM() takes four material parameters (e1, e2, e3, e4) of fine four
elements (left) and returns corresponding four coarse material parameters
(E1, E2, E3, E4) at the quadrature points (right) to minimize the error.

Then, our design problem can be rewritten in the reduced space as

arg min
z

: wfEf + waEa + wrR, R =
1

2
zTQz, (3.4)

where wr is a weight, R is the regularization term, and Q is the reduced
Laplacian matrix which is diagonal and its entries consist of the eigenvalues of
the volumetric mesh Laplacian (please see [142] for the details). This material
reduction also has a merit to reduce the over-fitting problem.

We solve our design problem Eq. (3.4) by decomposing it into two problems
min : Ef andmin : Ea, and minimizing them alternately. We employ a hybrid
optimization scheme [17] of evolutional strategies (we used CMA-ES [40]) and
gradient descent approach (we employed the Quasi Newton method). For
the details of the gradient computation and this hybrid scheme, please see
Appendix B and C.

3.7 Fast Approximate Modal Analysis
At each iteration during our optimization, a modal analysis is required for
the evaluation of the objective function and its gradient. However, standard
modal analysis (solving a generalized eigenproblem of large stiffness and mass
matrices) is prohibitively expensive and impossible to execute at an interactive
rate. To address this, we present a method that combines extended data-
driven online coarsening of finite elements (§3.6.1) and highly parallelized
hierarchical component mode synthesis (§3.6.2).

3.7.1 Data-Driven FEM using Regression Forests
In this section, we explain the data-driven online coarsening of the FEM

mesh. It takes the detailed voxel mesh (2×2×2× cube elements) as input and
generates a coarse approximated mesh (a cube element) as output using the the
material parameter mapping learned from training data in the precomputation
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Figure 3.5: Eight equivalent cell variations (in 2D illustration). The top row
represents four rotated variations and the bottom row represents four reflected
variations.

step (Figure 3.4). The concept of our data driven FEM coarsening is based on
[15]. The goal of their data-driven FEM is obtaining

(E1, ..., E8) = DDFEM(e1, .., e8), (3.5)

whereDDFEM() is a function that takes eight material parameters (e1, ..., e8)
of a detailed mesh and returns the corresponding eight coarse material param-
eters (E1, ..., E8) at the cubature points to minimize the error. Their system
computes this function for all possible input values in precomputation and
stores the result in the main memory. The system then evaluates this func-
tion referring the memory at runtime. It aggressively accelerates FEM while
maintaining the accuracy by reducing the Dofs (24/81) and the number of the
cubature points (8/64) although the total number of the material parameters
remains unchanged between the detailed and coarse mesh. However, in their
approach, given N discrete materials, the number of material combinations
becomes N8. Although they also proposed a compression algorithm by re-
taining only the small number of representative material combinations, it still
cannot be used for our material optimization that requires a large range of
continuous material settings. Additionally, it is non-trivial to obtain an actual
value from such representative materials. To address this, we present three
techniques: 1: Overlapping Free Cell Ordering, 2: Scaling Factor Separation,
3: Regression Forests. The former two techniques reduce the parameter space
of the feature vector e (the detailed eight material parameters) for efficient
machine learning, and the last technique enables handling of a large amount
of dataset with a constant evaluation cost.

Overlapping Free Cell Ordering

As shown in Figure 3.5, the rotated and reflected variations of a material
setting are basically equivalent. To enumerate such patterns increases the
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Figure 3.6: Overlapping Free Cell Ordering (in 2D illustration). 1: At the i-th
cell evaluation (in this example, we assume i = 2), ei becomes the origin cell
e′1. 2: we compare the material values of the adjacent cells. 3: the smaller cell
becomes e′2 and the other becomes e′3. 4: The left cell becomes e′4.

parameter space of the feature vector unnecessarily and it should be reduced
for efficiency. To address this, we define Overlapping Free Cell Ordering
algorithm which makes explicit consideration of rotated and reflected patterns
unnecessary.

First, we redefine the data-driven function DDFEM() Eq.3.5 as

Ei = DDFEMi(e1, .., e8), i = 1, 2, ..., 8. (3.6)

Our data-driven FEM function returns a scalar while Eq.3.5 outputs aR8 vector.
It means we repeat thisDDFEM() evaluation eight times to convert a detailed
2 × 2 × 2 element into a coarse element. Next, we reorder the numbering of
the eight cells by eachDDFEM() evaluation. We show this operation as a 2D
example in Figure 3.6. The indices of the cells are defined in a local R3 space
coordinate. At the i-th evaluation within the eight evaluations, we define the
i-th cell as the origin e′1. Then, we compare the value of the Young’s modulus
of the three adjacent cells of the origin cell (in 2D, two cells), and define the
index the cell who has the smallest value as e′2, the cell who has the secondary
smallest value as e′3, and the other cell as e′4. Finally, we decide the ordering
of the rest four cells by the following rule: The cell that is adjacent to e′2 and
e′3 becomes e′5. The cell that is adjacent to e′3 and e′4 becomes e′6. The cell that
is adjacent to e′2 and e′4 becomes e′7. The last one becomes e′8.

Then, using these reordered parameters, our DDFEM() function is rede-
fined again as

Ei = DDFEMi(e
′
1, e

′
2, ..., e

′
8), e

′
1 = ei. (3.7)

By using this representation, we can avoid explicit enumeration of the eight
rotated and eight reflected patterns of a material pattern, and reduce the input
parameter space in 3D at both training and runtime. For dataset generation at
the training, we first determine the value at the origin cell, and seed the values
at the three cells e′2, e′3, e′4 to be e′2 ≤ e′3 ≤ e′4, and the rest of the values are
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Domain Decomposition

Coarse Voxel Mesh

(The Output of DDFEM*)
Subdomains

Local Eigen Problem Solves in Parallel
(D: Local Eigenvalues, U: Local Eigenvectors)
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{D6,U6}
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Hierarchical Merge by Eq. (3.13)(3.14)(3.15)

{D11,U11}

{D12,U12}

{D13,U13}

{D14,U14}

{D22,U22}

{D21,U21}

{D31,U31}

{D41,U41}

Merge adjacent domains in parallel

Global Solution

Error Correction

Figure 3.7: Hierarchical Component Mode Synthesis. After coarsening the
mesh, we decompose it into many subdomains and hierarchically merges
them with reducing their DoFs in parallel. Finally, we improve the accuracy
using an error correction algorithm.

randomly seeded.

Scaling Factor Separation

Young’s modulus has a large range of the value 10−2 (Rubber) ∼ 103 (Dia-
mond) GPa while Poisson’s ratio has a small range (−1/2, 1/2). It is difficult
to treat a practical amount of data for such a large range during training. To
avoid this, we dramatically reduce the training size by separating the scale
factor.

Based on [15], ourDDFEM() is constructed to minimize the square differ-
ence of the integral of the strain energy density functions between the detailed
and coarse meshes

arg min
Ei

∑
f∈F

(
8∑

i=1

wiv
c
i (f, Ei)−

8∑
j=1

8∑
i=1

wiv
d
ji(f, e

′
j)

)2

, (3.8)

where w denotes the cubature weights, F denotes a set of randomly sampled
external forces, and vc and vd represent the strain energy density function of the
coarse and detailed mesh respectively. Here, the strain energy density func-
tion in linear elastic is represented as v(f, e) = K(e)u(e)2 = K(e)(K−1(e)f)2,
where K(e) and f are the stiffness matrix and the external forces respec-
tively. In addition, multiplying e by a scalar s, v(f, s · e) = K(s · e)u(s · e)2 =

sK(e)((sK(e))−1f)2 = v(f, e)/s because K() is the linear function of e. Then,
the minimization problem

arg min
Ei

∑
f∈F

(
8∑

i=1

wiv
c
i (f, Ei)−

8∑
j=1

8∑
i=1

wiv
d
ji(f, s · e′j)

)2

, (3.9)

is equivalent to

arg min
E′

i=Ei/s

∑
f∈F

(
8∑

i=1

wiv
c
i (f, E

′
i)−

8∑
j=1

8∑
i=1

wiv
d
ji(f, e

′
j)

)2

. (3.10)
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This means that we can separate the input parameter space of our DDFEM()

problem by the multiplication of the value of the origin cell as a scale factor
and their quotients. Finally, we can obtain our DDFEM() function as

Ei = ei ·DDFEMi

(
e′2
ei
, ...,

e′8
ei

)
. (3.11)

An advantage of this representation is that it reduces not only the range of
dataset but also the dimensions of the feature vector from R8 to R7. Note that
we assume our model as linear elastics although the originalDDFEM() treats
nonlinearity because the vibrational analysis discussed in this paper is a linear
analysis. Introducing the nonlinearity for large deformation is a future work.

Regression Forests

In contract with Chen et al.’s method [15], we do not construct the database of
data-driven materials because of two reasons. First, their database approach
cannot handle the inputs that are not included in the training dataset be-
cause it has no generalization ability. Second, the evaluation cost at runtime
is increased at a rate proportional to the amount of the dataset although the
amount of the dataset should be increased for handling more material pat-
terns. To address these problems, we train ourDDFEM() function using two
regression forests. Our regression forests are similar to [75] which construct
each tree through two steps training: tree structure construction with a subset
of learning data and least-square solve for the regression coefficients at each
leaf node with all the dataset. The regression forest has an advantage of con-
stant cost evaluation even if the amount of the dataset is increased. Finally,
our DDFEM() becomes{

Ei = ē ·Reg1( e
′
2

ē
, ...,

e′8
ē
) (ei = 0)

Ei = ei ·Reg2( e
′
2

ei
, ...,

e′8
ei
) (ei > 0),

(3.12)

where Reg() represents the regression function, and ē is the average of the
Young’s modulus in the target eight cells.

3.7.2 Hierarchical Component Mode Synthesis
After coarsening the mesh, we compute modal analysis using a novel hierar-
chical component mode synthesis method (HCMS) including an efficient error
correction algorithm (Figure 3.7). It takes the coarse voxel mesh as input and
solves a generalized eigenproblem via hierarchical merging. It first decom-
poses the mesh into small components and solves a generalized eigenproblem
for each component. It then hierarchically merges adjacent components and
solves generalized eigenproblems for the merged component. Conventional
CMS [5] computes the eigenmodes of a structure by combining several small
local subdomains after decomposing it into several small subdomains. Our
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HCMS decomposes a structure into finer subdomains compared to conven-
tional CMS to increase the computational efficiency while sacrificing accuracy.
To compensate for the loss of accuracy, we apply a subspace iterative error cor-
rection using the result of HCMS as an initial solution.

To simplify the explanation for our HCMS, we first begin with assuming
that a model can be decomposed into two non-overlapping domains S1 and S2
as in conventional CMS, and the eigenpairs of each domain are already known.
Under this assumption, the entire stiffness matrix Ktotal and the entire mass
matrix M total can be represented as

Ktotal =

[
K11 K12

K12 K22

]
, M total =

[
M 1 0

0 M 2

]
, (3.13)

where K11, K22 and M 1, M 2 denote the local stiffness and mass matrices of
each sub-domain respectively. K12 and K21 are the interface matrices that
connect the domains S1 and S2. If the eigenvectors of each domain U 1 and U 2

are already known, we can rewrite the Eq. (3.13) using the reduced matrices
of each domain with remaining the lower frequency modes as

K ′
total =

[
D1 U1TK12U2

U2TKT
12U1 D2

]
, (3.14)

where D1 = U1TK11U1 and D2 = U2TK22U2 are diagonal matrices in
which each diagonal entry is the eigenvalue of the respective subdomain.
Note that the entire mass matrix also takes the same form for, UT

1M 1U 1 = I ,
and UT

2M 2U 2 = I , meaning that the entire mass matrix becomes an identity
matrix. Athough conventional CMS distinguishes the interface of adjacent
subdomains and subdomains, and assumes the interface as fixed [5] or con-
siders the boundary modes [148], our approach neither distinguish them nor
fix the interface, and does not treat the interface explicitly. We can obtain a
reduced eigenproblem of the entire structure as K ′

totalU
′
total = ΛtotalU

′
total,

where Λtotal is a diagonal matrix in which each diagonal entry is the eigen-
values of the entire domain. We solve this reduced eigenproblem, and finally
recover the global eigenvectors by

U total =

[
U 1

U 2

]
U ′

total. (3.15)

We apply the pair wise merger explained above in a hierarchical manner. We
divide a large structure into many small subdomains and merge them in a
hierarchical manner (Figure 3.7). The system first decomposes the volumetric
mesh after coarsening into many small subdomains S1, S2, ..., SN by a domain
decomposition. To decompose a mesh, we use [134] by expanding it into
volumetric mesh, which decomposes the mesh by K-Means++ clustering [4] of
the eigenvectors of the volumetric mesh Laplacian. It requires no additional
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precomputation costs since the volumetric mesh Laplacian has been already
obtained at the precomputation stage as described in §3.5.

We compute the local generalized eigenproblem of N sub-domains in par-
allel and reduce the DoFs using the eigenvectors at each subdomain. Next,
we iteratively merge two adjacent subdomains by Eq. (3.14), and solve the re-
duced eigenproblem, and Eq. (3.15) to obtain the eigenvectors of the merged
subdomain. This procedure also can be executed in parallel until all the sub-
domains are merged. Finally, we merge all the subdomains and obtain the
approximate eigenvector of the entire structure. The order of merging subdo-
mains is irrelevant in our algorithm because the error caused by suboptimal
order will be fixed later in our error correction (§7.2.1). We note that this
hierarchical merging procedure is new. We implemented local eigenprobrem
solves of each subdomain by a combination of incomplete Lanczos matrix
triangulation and QR method.

Error Correction

HCMS is just an approximation method and sacrifices the accuracy for com-
putational efficiency. To correct this error, we introduce the subspace iteration
method [7] using reduced mass Gram-Shmidzt process [147]. We set approx-
imated eigenvectors of HCMS as the starting iteration vectors X0 and execute
the following iteration k = 1, 2, 3... until it converges.

Solve PCG : KU = MXk−1, (3.16)
U ← ReducedMGS(U), (3.17)

K ′ = UTKU , M ′ = UTMU , (3.18)
Solve QR : K ′Q = ΛM ′Q, (3.19)

Xk = U +Σ(UQ−U), (3.20)
Xk ← ReducedMGS(Xk), (3.21)

where ReducedMGS() is the reduced mass Modified Gram-Schmidt process
to orthogonalize the eigenvectors [147], Σ denotes a diagonal matrix in which
each diagonal corresponds to the overrelaxation weight of the i-th eigenvalue
to accelerate the convergence [8]. We solve the first line Eq. (3.16) by incom-
plete cholesky factorized pre-conditioned conjugate gradient method with
respect to each column vector in parallel, and implement the QR method Eq.
(3.19) on GPU.

3.8 Results

3.8.1 Validation of Modal Analysis
In this subsection, we verify the accuracy and computational efficiency of
our fast approximate modal analysis. As the ground truth, we used the
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Ground Truth

(21.9min)

HCMS

(3.3min)

HCMS + EC

(12.5min)

t = 0 t = 1 t = 2 t = 3 t = 4time:

Figure 3.8: Comparison of the deformation of the 7-th modes between HCSM
with/without EC and the ground truth. Our error correction algorithm effi-
ciently improve the accuracy within an additional few minutes.

result of the full-DoF standard modal analysis using ARPack (with sufficiently
fine-resolution uniform hexahedral mesh). We used CPU: Intel Core i7 2.6
GHz, RAM: 16GB, GPU: NVIDIA GeForce GT 750M as the equipments in §8
excluding the DDFEM trainings. We set the Poisson’s ratio as 0.25 and the
density as 1.0 kg/m3 for all experiments.

Data-Driven FEM: We call our data-driven FEM as extended data-driven
FEM (DDFEM*) for distinguishing from Chen et al.’s method [15] (DDFEM).
We used two regression forests, and three regression trees for each forest, and
set the maximum depth of all the trees as 20. We trained each regression
forest for DDFEM* by 1 billion entries of the dataset for constructing the tree
structures and 10 billion entries of the dataset for training each leaf node (re-
gression function construction). For the dataset generation of data-driven FEM
(a sample includes 8 material parameters of detailed 2× 2× 2 blocks and the
corresponding 8 coarse material parameters), we used 1,000 force directions
and sample 5 sample magnitudes in each direction, resulting in 5,000 force
samples for each material combination. We seeded the material combinations
randomly with [0, 10] GPa of range of Young’s modulus using hypercube
sampling. The training time took about ten days for data generation, two days
for the tree structure training using clusters of 12 computers, and a half day
for training the leaves. Finally, our regression forests required 529.9 MB for
storage.

We verified the accuracy and the evaluation cost of our data-driven FEM
by comparing it with a native coarsening approach (simply averaged material
setting of the detailed elements) and Chen et al’s method [15]. We prepared
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Method Training Time Evaluation Cost Storage Error

Native Coarsening zero 1 μs zero 0.0383003

Chen et al. 2015 2 hours 1 ms 3.82 MB 3.88114E-05

Ours (DDFEM  ) 12.5 days 0.2 ms 529.9 MB 4.19069E-05

With [0, 10] GPa Young’s modulus

(trained range)

With [100, 10000] GPa Young’s modulus

(outrange of the trained dataset for our regression forests)

Method Training Time Evaluation Cost Storage Error

Native Coarsening zero 1 μs zero 0.00360124

Chen et al. 2015 2 hours 2 .3 ms 8.11 MB 3.66629E-05

Ours (DDFEM  ) zero 0.2 ms 529.9 MB 3.6882E-05

*

*

Figure 3.9: Comparison of the accuracy of data-driven FEM. Top: The results
with [0, 10] GPa range of Young’s modulus (trained range of our regression
forests). Bottom: The results with [100, 10000]GPa range of Young’s modulus
(untrained range of our regression forests).

10,000 detailed 2× 2× 2 FEM cube blocks with randomized material distribu-
tion and applied them to 2,000 random external force samples. We define the
error of coarsening as the average of the square distances of the displacements
between detailed simulation (ground truth) and coarse simulation over the
samples. Because the detailed elements and the coarse element have different
numbers of vertices, we measured the error by creating a detailed mesh from
the coarse simulation by trilinear interpolation and computing the distance of
their displacements. In addition, we defined the evaluation cost as the time
for coarsening a 2 × 2 × 2 elements to an element. Since the evaluation cost
of DDFEM depends on the database size and the search algorithm, we then
prepared the sorted index of the database at precomputation, and searched
them by quick search at runtime.

Figure 3.9:Top shows the result of this experiment for the samples with
randomly generated Young’s modulus setting using [0,10] GPa range. This
material parameter range is included in the training dataset for our regression
forests. Our regression forests successfully reduce the error on a level with
Chen et al.’s method [15] while native coarsening approach causes a large
error. Next, Figure 3.9:Bottom shows the result by the samples with the
range of Young’s modulus [100,10000] GPa that is clearly out of range of the
trained dataset for DDFEM*. The result shows our method can also handle
this range of inputs and returns good results with no additional training
while DDFEM requires additional trainings for new data. It is enabled by our
scaling parameter separation algorithm. In addition, the evaluation cost of
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Figure 3.10: The accuracy of HCMS with/without EC. Our error correction
algorithm dramatically improves the accuracy within a few iterations. The
horizontal axis: the mode number, the vertical axis: the eigenvalues.

our DDFEM* is constant even if the amount of dataset is increased and much
faster than DDFEM whose cost is increased in proportion to the amount of the
dataset.

Hierarchical Component Mode Synthesis: For the evaluation of HCMS,
we decomposed each model of Figure 3.11 into 10∼20 subdomains and hi-
erarchically merged them. When two subdomains are merged, we retained
min(Nsub, 512)DoFs whereNsub denotes the total DoFs of the two subdomains.

Figure 3.10 shows the error comparison of eigenvalue computation of
HCMS with/without error correction (EC) and the ground truth using the
Chinese dragon model. We can see that our error correction algorithm con-
verges very quickly in only a few iterations and efficiently reduces the error.
In addition, the break line in Figure 3.10 shows comparison of the error correc-
tion using the result of HCMS and randomized (with N(0, 1) Gaussian) and
orthogonalized vectors as the starting vectors. We can see that the iteration
with randomized starting vectors does not converge within a few iterations.
This shows that the approximate solution of HCMS is a good starting vectors
for the subspace iteration method.

Next, we show the comparisons between the modal deformations by stan-
dard modal derivatives and our method’s (HCMS and HCMS + EC) at the 7th
mode in Figure 3.8 for example. The results show that our HCMS can capture
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Model DoF Precomputation ARPack DDFEM HCMS HCMS + EC DDFEM  + HCMS + EC

Stanford Bunny 31419 18.8m 4.1h 15.3m 9.8m 28.4m 2.6s

Asian Dragon 6009 23s 14.8m 2.1m 1.1m 4.3m 0.86s

Utah Teapot 12057 1.5m 52.8m 5.7m 4.9m 17.2m 1.1s

Chinese Dragon 11394 50s 21.9m 3.2m 3.3m 12.5m 1.4s

Pitcher 15927 2.3m 37,6m 6.4m 3.4m 17.8m 2.3s

Snare Drum 35484 21.5m 3.9h 12.3m 9.7m 25.6m 2.4s

* *

Figure 3.11: Computation time comparison of modal analysis. We computed
the first 256 modes for all model.

rough motions of the elastic object in both lower and higher frequency do-
mains, and the error correction algorithm successfully brings the approximate
solution close to to the ground truth within an additional few minutes.

Combination of Extended Data-Driven FEM and HCMS: Figure 3.11
shows the computational times of each modal analysis method using DDFEM*,
HCMS with/without EC, and their combination with several models, re-
spectively, while ARPack denotes the standard modal analysis (conventional
method). The precomputation column in Figure 3.11 represents the precom-
putation times taken for each model (The voxelization and the eigenprob-
lem solves for the volumetric Laplacian matrix). The computation times of
DDFEM* include the time for the online coarsening procedure. We achieve
two orders of magnitudes acceleration with each of DDFEM* and HCMS + EC
respectively, and three orders of magnitudes acceleration in total compared
to the conventional modal analysis by their combination. The exact compu-
tational time using the combination method becomes 0.5∼3.0 secs, which is
acceptable for interactive evaluation.

Figure 3.12 shows comparison between two deformation trajectories pro-
duced with standard modal derivatives (ground truth) and our fast approx-
imate modal analysis method after applying a unit force impulse at the lo-
cation pointed by the white arrow in the top thumbnails. We also provide
the time series of magnitudes of the displacement at the dragon’s nose in Fig-
ure 3.12:Bottom. The two trajectories plot quite a similar form, which shows
that our method gives good approximation for the conventional approach
with much faster operation.

Finally, Figure 3.13 shows the spectrograms of the sound produced by
a rigid body physics animation using ground truth and our combination
method. Naturally, the spectrogram of the ground truth includes more high
frequency components than that of ours because it uses a detailed FEM mesh.
However, our result can capture a better portion of the major components
enough for our optimization problem.
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Figure 3.12: Comparison of between two deformation trajectories of the
dragon’s nose (red circle at the top thumbnails) produced with standard modal
derivatives (red) and our method (DDFEM* + HCMS + EC) (blue). The white
arrows at the top thumbnails represent the applied force impulse to drive
them.

3.8.2 Physically-Based Sound Design
In this subsection, we demonstrate our physically-based sound design frame-
work. For all the examples, we used the results of our fast approximate modal
analysis to render the sound. We set the weights in Eq. (3.4) to wf = 1.0,
wa = 10.0, wr = 10−5 in our experiment.

Basic Sound Assignment: Figure 3.14 shows an example of assigning two
sounds to a frying pan model. The frying pan consists of a handle made of
wood and plate made of iron. We stuck the pan at the handle and the plate,
and recorded the respective sounds. We used these recorded sounds as in-
put to the system. In this example, 30 extracted target modes were extracted
from these two sound clips, and we controlled the first 30 modes of the model
excluding the six rigid modes. The two spectrograms at the top row in Fig-
ure 3.14 represent the rendered sounds when each position is struck before
the optimization. The spectrograms at the middle row are target sounds, and
at the bottom row are the results after one minute of optimization. Appar-

35



Standard Modal Analysis 

4.1 hours

Fast Approximate Modal Analysis (Ours)

2.6 seconds

Time [s]Time [s]

F
re

q
u

e
n

c
y

 [
H

z]

F
re

q
u

e
n

c
y

 [
H

z]

Figure 3.13: Comparison of the modal sound synthesis from a simple rigid
body physics simulation between standard modal analysis (left) and our fast
approximate modal analysis (right).

ently, the two spectrograms after the optimization closely resemble each target
sound. In addition, even if a different position from the one assigned is struck,
the sound characteristics of the target sounds near the position is produced
in a physically plausible manner (Figure 3.14:Bottom). This result shows that
over-fitting is not a serious problem in our optimization. Furthermore, our
approach requires less amount of example sounds for designing the sound of
an object, which reduces the user’s effort. For example, in [132], there is a fry-
ing pan example which is similar to our experiment. They used five example
sounds to design the sound of the plate alone (except the handle) while we
used only one example sound for each part.

Interactive Editing: Next, we demonstrate an example of the interactive
editing procedure of physically-based sound using a teapot model. Please see
the supplemental video for an interactive demonstration. We first assigned a
sound caused by a metal plate being hit to the teapot’s body and started the
optimization. During the optimization, we checked the intermediate result on
the UI view (Figure 3.3) and stopped the iteration when the sound of the object
was sufficiently close to the given target sound. In this timing, all the positions
indicated sounds similar to the target sound. To append more varied sound
properties, we assigned two additional target sounds (two different metal
sounds) to the lid and spout one by one. As seen in this example, the user can
design the sound of an object while running the optimization and the user’s
edits are immediately reflected in the simulation within a few seconds. The
user can iteratively re-edit the sound property of the object with checking the
intermediate results. This type of interactive physically-based sound design
workflow has not been presented before.

Imaginary Sound Assignment: Our system allows the user to assign
imaginary target sounds to a 3D model (Figure 3.15). In this example, we
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Figure 3.14: The result of assigning two target sounds to a frying pan model
after a minute of optimization. We assigned the metal sound to position
1 (plate) and wooden sound to position 2 (handle). Top right shows the
convergence curve of the cost (Eq. 3.4)
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Figure 3.15: The result of assigning four target sounds to stanford bunny
model after four minutes of optimization.

38



Figure 3.16: The result animation including various objects.

assigned a piano C4 sound to the head of the bunny, a piano E4 sound to
the body, a piano G4 sound to the tail, and a piano F3 sound to the leg,
and optimized. The result after four minutes of optimization is shown in
Figure 3.15 by spectrograms. Although an object that has such sounds does
not exist in the real world, our system produces a physically convincing result.
This is also an advantage of our approach compared to the previous method
[111].

A Complicated Scenario Example including Various Objects: Finally,
we demonstrate a complicated scenario involving several objects as shown
in Figure 3.16. We include this animation scene in the accompanying video.
In this scene, the sounds of the all objects are designed by our system, and
all sounds are triggered automatically by rigid body simulations. It took 30
minutes for us to design sound of all the object in the scene using our tool, one
week for rigid-body simulator setting, and three days for visual rendering.

3.9 Conclusion and Future Work
We presented a novel example-based design framework of physically-based
sound of a 3D model using material optimization. It allows physically-based
sound design without considering unintuitive physical parameters for the
user. This achieves practical design workflow which was difficult in previous
methods. In addition, our system runs at an interactive rate that enables the
user rapid try and error design procedure. This is achieved by our novel fast
approximate modal analysis that consists of data-driven online coarsening
of the mesh and hierarchical component mode synthesis with efficient error
correction. We demonstrated our framework provides the user to intuitive
design workflow of the sound of an object with a set of examples.

However, several limitations are observed in our work, which remain to be
addressed in future work. A critical limitation is that our sound design tech-
nique cannot be used for fabrication because we employ continuous material
optimization, which simulates materials that do not exist in the real world.
Although the usage of combinatorial optimization using existing materials
can also be considered, it is still difficult to make an object consist of various
materials that have a large range of material parameters seamlessly using ex-
isting fabrication tools. Second, our current optimization does not consider
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the effects of sound radiation and propagation. However, radiation and prop-
agation effects are important for sound design and thus we plan to extend our
method to support them using Li et al. [79]’s technique in the future.

We only optimized Young’s moduli in this paper. which limits the repro-
ducibility of the example sounds. As an improvement, Poisson’s ratios could
be treated similarly by converting Young’s moduli and Poisson’s ratios to the 2-
dimensional space of Lame’ parameters [119] and performing the optimization
in this linear space. However, the dimension of the feature vector for inputting
data-driven FEM increases, and it could reduce the training efficiency of our
regression forests. There is a similar problem for treating the densities. To
treat such a large parameter space with a machine learning technique remains
as future work.

Naturally, our fast approximate modal analysis pipeline can also be used for
deformable animation. Applying our approach to large deformable simulation
or combining it with [147] could be also useful and promising work. Finally,
we use voxel elements. The fineness of the details of the model depends
on the voxel resolution. To address this, adaptive coarsening could be useful.
However, how to treat such an adaptive mesh with machine learning technique
is non-trivial and remains as future work.
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Chapter 4

Controlling Lyrics and Melodies for
A Singing Voice Synthesizer in
Realtime

4.1 Introduction
The use of a singing voice synthesizer such as VOCALOID [67] has become
very popular. The singing synthesizer generates human singing voice by
inputting melody (pitch) and the corresponding lyric (phoneme). However,
there is little precedent of live improvisational performance using real-time
singing voice synthesis even though there is a huge demand for it. This is
mainly because it is very difficult to input song lyrics at a real-time rate; this
is the problem we want to address in this paper.

A possible approach is to use automatic fitting of the predefined original
lyrics to the melody currently being played using melody matching. How-
ever, this approach has two problems. First, players often modify the melody
significantly including addition of grace notes and change of order in a live
improvisational performance. Second, the same melodies often appear re-
peatedly in a song with different lyrics, making it very difficult to find the
appropriate lyrics from melody alone in improvisational performance.

Another possible approach is to use speech recognition to input lyrics.
This allows the user to improvise arbitrary lyrics during performance, but also
presents several problems. First, recent popular speech recognition techniques
are optimized for recognizing continuous speech as a whole, rather than for
recognizing individual characters in a song separately for timed performance.
Second, latency is inevitable in speech recognition, but is not acceptable for
real-time musical performance. Finally, it is difficult for the player to listen to
his or her own performance while vocalizing.

There are a few experimental systems that allow the user to input arbitrary
Japanese lyrics during live performance using a combination of vowel and
consonant keys [93][144]. However, they require the user to press two keys
simultaneously to input a character, making it difficult to play fast songs.

41



…

Ko n Ni Ti Wa
a Ri Ga To u～♪
o Ha Yo u
Ni Ho n Go～♪

To u Kyo u
Yo Ro Si Ku～♪
Ta No Si i Yo～♪...

Before Performance Actual Performance

Register the lyrics
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Probabilistic Model

Lyrics

A Standard Musical Keyboard

Vowel Input Keys Melody Input Keys
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n

Input Vowel Sequence: o-n-i-i-a...
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Ko-n-Ni-Ti-Wa...

Melody
step 1 forward

skip 1 character

a mistake

step 1 forward

skip 1 character

a mistake

step 1 forward

skip 1 character

a mistake

Singing Voice Synthesizer

Figure 4.1: An overview of the proposed system. Our system consists of
two steps, lyric registration step and actual performance step. At the lyrics
registration step, the user registers the lyrics of the songs, and the system
analyzes it. At the actual performance step, the user simultaneously inputs
the vowel sequences and melodies using a musical keyboard, and the system
estimates the plausible lyrics from them and synthesizes singing voice sounds.

To address these problems, we propose to use a vowel keyboard to input
the lyrics during live improvisational performances (Figure 4.1: right). In our
system, the user inputs the lyrics with one hand using a vowel keyboard and
the melodies with the other hand using a musical keyboard simultaneously.
Our system allows the user to modify the melodies of a song freely and to pick
an arbitrary portion of predefined lyrics during a live performance.

Our system is designed for Japanese lyrics. In Japanese, a character con-
sists of a consonant and a vowel (Figure 4.2: left). Hence, multiple Japanese
characters match a given vowel. However, we can identify the most plausible
character sequence in the predefined lyrics by finding the corresponding vowel
sequence using a probabilistic alignment technique (Figure 4.1). Specifically,
our system automatically finds a portion of the predefined lyrics whose vowel
sequence matches well with the vowel sequence being input by the player. We
use a Hidden Markov model for alignment.

There are only five vowels in Japanese, “a", “i", “u", “e", and “o". We
also use a special character “n", hence we use six keys to input lyrics. This
makes it possible to input vowels very rapidly without moving the hand
to other locations in contrast to other methods that use many keys to input
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Figure 4.2: In Japanese, a character consists of a consonant and a vowel (left).
For example, “Ka" is the combination of “K" and “a", “Su" is the combination
of “S" and “u". There are 5 vowels and a special vowel (n) in Japanese. We
mapped these vowels on a piano keyboard (center). Because of this, in our
system, the lyrics can be represented as a standard musical score as the left
hand part (right).

lyrics. Additionally, by mapping the vowel keyboard onto a traditional musical
keyboard, one can represent lyrics as a standard musical score (Figure 4.2:
right), enabling the user to practice the skills more easily.

One possible criticism is that one can use only the predefined lyrics in
our system. It is not possible to compose completely novel lyrics during
performance, However, in real improvisational performance, it is actually very
rare to see the singer composes completely new lyrics during performance.
They usually improvise novel melodies (or a little modified melodies from
composition) using given lyrics at live performance, which can be handled
using our method.

In addition to improvisational live performance, our target includes several
situations. For example, when a composer (specifically non-vocalist) makes a
melody for a given lyric, using our system, he or she can can try the idea more
quickly than offline composition. An another example is a music arrangement
of an existing song. An arranger can try the idea more easily using our system.

The contributions of this paper are as follows.

1. Our system allows the user to perform regular Japanese songs at the
original tempo, including very high-speed songs.

2. Our system enables the user to rearrange the pieces of pre-defined lyrics
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in a live improvisational performance.

3. We introduce the analogy of a musical score alignment technique to
lyrics alignment.

4. We examine the feasibility of the method with performance evaluation
and user studies.

4.2 Related Work
In this section, we describe the related works for controlling texts and melodies
of a song for a singing voice synthesizer in realtime. In addition, we also review
existing studies for accelerating text entry and related musical score alignment
techniques.

4.2.1 Live Performance using Human-Like Synthesized Voice
There is a long history of live performance by synthesizing human-like voices.
One of the oldest example uses analogue synthesizers that is called “Choirs
voice" [22]. Singing voice synthesizer have also essentially originated as this
choir voice. Traditional choirs voices are made by imitating human voices
using subtractive synthesis that making a sound by engraving a signal source
which has rich overtones by filters, or additive synthesis that generates various
sounds by combining many sine waves [21]. Such choir voices have been
widely used for live performance by many musicians. However, the sounds
are not realistic, and limited to generate one or two phonemes during the
performance.

An another origin of singing voice synthesizer is vocoder [27]. Vocoder is
a widely used sound effecter for live performance that appends speaking like
(robot voice) effect to other sounds (e.g., guitar, synthesizer) by modulation.
It uses two input sources: modulator and carrier signals. The carrier provides
the modulated signal (from guitar or synthesizer input) that determines timbre
to talk and pitch while the modulator provides phoneme to talk by musician’s
voice from microphone input. This allows musical instruments’ sound to
speak by musician’s own voice. However, the vocoder sound is just a human
like talking effect and not a realistic human voice.

As the development of digital synthesizers, modern choir voice uses PCM
(pulse width modulation) synthesis alternatively. PCM uses multiple recorded
sound samples and switch them by controllers. Thus, it provides realistic
human singing voice for choir voice. A significant advantage of this method
is allowing to switch multiple phonemes (at most 4∼5 phonemes) by some
controllers (e.g., velocity, modulation wheel) during the performance. This
enables musicians JAZZ scat like improvisational live performance [143] by a
synthesizer, and the ability is currently implemented in many contemporary
musical keyboards. However, these synthesizers can provide only a few major
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Figure 4.3: Yamamoto et al. [139] (left) and Formant.Bros’ system [88] (right).

phonemes widely used for scat because of the difficulty of controlling many
phonemes, which still limit the expressiveness of the choir voices.

4.2.2 Realtime Lyric Control for Singing Voice Synthesizer
Yamamoto et al. [144] used a combination of a dedicated special keyboard to
input lyrics used by the left hand and a standard musical keyboard used by
the right hand for improvisational performance (Figure 4.3: left). The lyrics
keyboard is designed for Japanese, consisting of ten consonant keys and five
vowel keys placed to fit the left hand. The user inputs a character by pressing
a combination of a consonant key and a vowel key. However, it is very difficult
for a typical player to press correct multiple keys simultaneously during a live
performance.

Formant Bros. [93] assigned lyrics input keys to a common musical key-
board (Figure 4.3: right). A character can be input using the triplet three-key
combination of a pitch key, a consonant key, and a vowel key. The benefit of
this approach is that it enables description of lyrics and melodies as a standard
musical score, making the method easy to learn. However, the consecutive
triplet chord input is very difficult even for professional pianists. Thus, the ap-
proach remained at the level of playing very slow nursery rhymes, in contrast
to regular songs played at a realistic speed (we assume the range of tempo of
regular songs is about 50∼200 BPM [beats per minute]).

HANAUTAU [125] uses pitch detection from the user’s voice inputted by
microphone for melody and lyrics typed with both hands using a common
QWERTY keyboard. However, using a QWERTY keyboard does not provide
input at a speed sufficient to play common music adequately.

A case has been made to use a Flick text input method [105] for live perfor-
mances using real-time singing voice synthesis to input lyrics. Although the
Flick text input method is a very fast text entry method, , it still can’t achieve
sufficient input speed for singing a song. Additionally, because it requires
two-step control (push and slide), it is difficult to adjust the timing to the
music using that method.

DiVA [25] uses CyberGlove and several sensors and measured the hands
gestures to control the lyrics. The gestures are trained and trigger a neural
network with a given gestural language that associates one posture for each
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phoneme of English. However, the gestural control is difficult for fast songs.
Cantor Digitalis [31] has been used in several musical improvisations using

singing voice synthesizer by multi-touch tablet. Their alphabet control is
limited in only a few vowels (formants) and can’t output the most characters
including consonants as a language. Then, their system is inadequate for
performing the lyrics of common songs. We address this issue.

4.2.3 Text Entry
Text input predictions [33] [117] and query word suggestions [63] [154] are
not applicable to our target purpose, because they pose two problems for our
target. First, there is no way to input the first character of the word the user
wants to input at a real-time rate. Second, there is no way to select a candidate
in real-time.

Many studies have been conducted regarding word completion [14] [140]
from the user’s ambiguous input. The word completion methods modify or
correct word input by the user including mistypes to form a plausible word.
However, these approaches use lazy evaluation. Lazy evaluation estimates the
correct word retroactively after the user inputs several words. Thus, it can’t
be used for our target, which requires outputting the characters individually.

4.2.4 Musical Score Alignment
Our algorithm for controlling a singing voice synthesizer is analogous to
a probabilistic musical score alignment technique. Musical score alignment
techniques estimate the current playing position of given music (audio or MIDI
stream) in a musical score in a database, and use it for various applications such
as generating musical accompaniments [100], and displaying the musical score
using auto scroll [60] [78]. Unlike these methods, our alignment technique
estimates the current playing lyrics position.

Recent studies regarding musical score alignment are categorized into two
approaches. The first approach is to solve the problem by minimizing some
metrics representing how two musical signals differ at each time [145]. This
approach is vulnerable to the uncertainty of the user’s performance including
mistakes, tempo change, or other musical expressions. The second approach is
to use probabilistic models [86] [100]. This approach is advantageous because
it is robust against such uncertainties in the user’s performance. We also use
a probabilistic model, but for vowel sequence not for melody. The significant
difference from realtime musical score alignment (specifically automatic ac-
companiment generation) is the timing control. The musical accompaniment
generation system outputs the corresponding accompaniment for user’s per-
formance. In this case, the user does not control the playing timing of system’s
output directly. On the other hand, the user directly control the voicing timing
in our system.
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Figure 4.4: The user interface view of the LiVo system on a web browser. The
user enters the lyrics in the top left text area before performance.

4.3 User Interface
An overview of our system is shown in Figure 4.1. Our system requires

two steps. The first step is lyrics registration before performance. The second
step is actual performance. At the lyrics registration step, the user registers the
intended lyrics to be used. The user can register multiple lyrics at a time. At
the performance step, the user simultaneously inputs vowel sequences using a
vowel keyboard and melodies using a musical keyboard. The system estimates
the plausible lyrics from the vowel sequences and synthesizes singing voice
sounds. Note that the system does not use a melody sequence for estimation.

The vowel keys are assigned to a portion of a standard musical keyboard.
In our prototype, each key mapping is set as “a" to C2, “i" to D2, “u" to E2, “e"
to F2, “o" to G2, “n" to D#2, to fit all the keys in a palm (Figure 4.2: center).
This makes it possible to represent a vowel sequence as a standard musical
score, making it easier for players to practice the performance. In addition, the
musical score for our system requires only monophonic phrases of six vowel
keys, which is much simpler than that of Formant Bros. Actually, the musical
score for our system is much easier than popular piano scores such as J.S.Bach
and Chopin.

Our system doesn’t require the user to input the vowel sequences strictly
in the order of the original lyrics, because the system estimates the plausible
lyrics using a probabilistic model. This allows the user to jump to arbitrary
positions in the lyrics including backtracking. Additionally, our system allows
the user to make mistakes, freeing the player from paying excessive attention
to vowel input. When the user jumps the position of the lyrics, the system
would output a few wrong characters until following the user. However,
these wrong characters at least have correct vowels, which limits the level of
discomfort.
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The falling leaves
Drift by my window
The falling leaves
Of red and gold
I see your lips
The summer kisses
The sunburned hands
I used to hold

Since you went away
The days grow long
And soon I'll hear
Old winter's song

But I miss you most of all
My darling
When autumn leaves
Start to fall
Since you went away
The days grow long
And soon I'll hear
Old winter's song
But I miss you most of all
My darling
When autumn leaves
Start to fall

a line break

a line break(null line)
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♪Autumn Leaves (Lyric: Frank Shinatra)

}

}
}
}

}

}
}

Figure 4.5: The text format for registering lyrics before performance. We use
English here for explanation. The real system only takes Japanese alphabets
as input.

The timing control is complicated because two keys must be pressed in a
coordinated way. Our current implementation is as follows. If a pitch key
has already been pressed, the system begins a new voice when a new vowel
key is pressed. However, if no pitch key has been pressed, the system does
not begin a new voice, when a new vowel key is pressed. If a vowel key has
already been pressed, the system begins a new voice, when a new pitch key
is pressed. If no vowel key is pressed, the system begins a new voice with the
last vowel input by the user, when the user presses a new pitch key. We choose
this asymmetric scheme because pitch keys serve as the main control, with
vowel keys serving as a modifier. Note that previous systems [93] [144] begin
a voice only when 3 keys (vowel, consonant, and pitch) are pressed together,
creating difficulty in producing fast real-time performance.

4.4 Technical Details of Lyric Alignment
This section explains how we estimate the position that the user wants to
perform in the lyrics from the vowel sequences input by the user. In the regis-
tration step, the system analyzes the lyrics entered by the user, and constructs
a data structure to be used in the performance. In the actual performance step,
we estimate the most plausible lyrics using a Hidden Markov Model (HMM)
that encodes the behavior of the movements between consecutive characters
in the lyrics and jumps during performance. We search the end point of the
Viterbi path in this HMM using multi-agent search to find the best matching
lyrics for the given vowel sequence. Note that the estimation solely depends
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Figure 4.6: The hierarchical tree structure of the lyrics segments. The system
constructs this structure according to the annotations of the user. The black
lines denote the edges. The red, blue and green arrows denote possible jump
movements by the user in this tree.

on the vowel input, and does not use melody information at all.

4.4.1 Lyric Registration Step before Performance
Figure 4.4 shows the user interface view of the system. The user types the lyrics
in the the top-left text area and presses the“ convert”button to finish. The
text format for typing lyrics is shown in Figure 4.5. The system requires the
user to annotate rough structures of the song (e.g., repeating, verse, chorus, or
several phrases) manually using line breaks. With more line breaks inserted,
the system interprets the point as a larger compartmental boundary. After the
user completes text entry, the system decomposes the text into morphemes
(a sequence of characters) using morphological analysis. We define each
delimited morpheme as a “segment".

Commonly, a song has the hierarchical structure that consists of musical
phrases [137]. We construct a hierarchical tree structure (called lyrics tree)
of the segments using the user’s annotations (Figure 4.6). The lyrics tree is
constructed by dividing the array of segments recursively from a large struc-
ture to a small structure according to the annotations (the smallest structure
is a segment). The lyrics tree is used for determining the probabilities of each
movement in the lyrics as described in the next subsection.

4.4.2 The User’s Behavior Model for Lyric Movements
We model how the user moves from one character to another character

in the lyrics during a performance using a Hidden Markov Model (HMM)
(Figure 4.7), incorporating various assumptions regarding typical movements.
For example, progression to the next character is more likely than a jump to
a distant location, and a jump to the head of a sentence is more likely than a
jump to the middle of a sentence. We model this behavior using an Ergodic
Hidden Markov Model [87] as follows:
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Figure 4.7: We model the user’s movement between two characters in the
lyrics during performance as Hidden Markov Model (HMM). A position in
the pre-registered lyrics becomes a state.

Assigned State 1

Assigned State 2

Assigned State 3

Figure 4.8: Each state transition probability of HMM is determined manually
by the authors. we prepare a monotonic decreasing distribution function,
and assign the divided area to them according to the likelihood of kinds of
movement.

p(Z(1)...Z(T )|, π, τ) = π (Z(1))
T−1∏
t=1

τ (Z(t), Z(t+ 1)) . (4.1)

Here Z(t) represents the state at the time t, π(Z(1)) denotes the probability
of being Z(1) as the initial state, τ(Z(t), Z(t+1)) represents the state transition
probabilities from state Z(t) to state Z(t + 1), and T represents the current
time step. This HMM contains the unobserved states that represent the kinds
of movements in the lyrics (such as moving to the next character, skipping
one character, and making a mistake). In our HMM, an unobserved state
corresponds to a position in the lyrics and a transition between unobserved
states corresponds to a movement in the lyrics. Each transition generates a
specific observable symbol deterministically, which is a vowel of a character.
For example, if we have a pre-registered lyrics “Ko-n-Ni-Ti-Wa (segment 1), a-
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Ri-Ga-To-u (segment 2)", the HMM produces an observable symbol “o" when
moving to a state “Ko" or “To".

Each state transition probability of our HMM (probability of a movement
in the lyrics) is computed according to the kind of movement. For example,
moving to the next character is more likely than a jump to a distant location,
and a jump to the head of a sentence is more likely than a jump to the middle
of a sentence. The system first enumerates all the possible movements from
the current state and sorts them by the likelihood by the kind of movement.
For example, in the above example, if you are at “n", possible destinations are
“Ni" (next character), “Ti" (skip a character), “n" (stay at same character), “Ko"
(previous character), “a" (jump to the head of the next segment) in the order of
likelihood. The system then computes the probability of a movement using a
monotonically decreasing linear function that takes the position in the sorted
list as input and returns probability as an output (Figure 4.8).

The likelihood of a movement is computed by traversing the lyrics tree. An
example is shown in Figure 4.6. When the current state is one of the character
at a leaf node, it can move to the next character within the same leaf node, or
move up to parent nodes and then come down to some other leaf node like
red, bule and green arrows in Figure 4.6. Each step movement in the tree is
associated with a certain cost (e.g. moving to a next character has lower cost
than moving to a higher level), and the system accumulates these costs during
the traversal.

4.4.3 Estimation of The Performed Position in Lyrics during
Performance

The most plausible position the user wants to perform in the lyrics can be com-
puted as the end point of the Viterbi path that gives the highest accumulated
state transition probability (minimum cost) among all the possible paths in
the HMM. The Viterbi path is also required to output a vowel sequence that
matches with the user inputs. We search this path using a multi-agent search
algorithm [32].

The multi-agent search uses multiple interacting intelligent agents for find-
ing the minimum cost path. Each agent is associated with a state in the HMM
(a position in the lyrics), and moves to the next state according to the HMM
(color circles in Figure 4.7). Since multiple destination states exist for a state,
the system generates multiple copies of an agent and associates a copy with
each destination state. However, if the movement is an impossible one, the
system discards the copy. Each agent is scored by the accumulation of the state
transition probabilities between the respective pairs of HMM states passed.
For example, the score of the agent 1 in Figure 4.7 is determined by using
π1
0 × τ12 × τ23 × τ35 × τ56, where π1

0 denotes the initial probability of state 1
and τij denotes the state transition probability from state i to state j. If the
score of an agent becomes less than a threshold, the system destroys the agent.
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Additionally, if multiple agents are reached at the same position in the lyrics,
the system retains only the agent with the highest score. This procedure corre-
sponds to a the pruning process in dynamic programming. Finally, we obtain
the optimum position by selecting an agent has the maximum score at the
current time.

4.5 Evaluation

4.5.1 Implementation
Figure 4.10: left shows the system setup for LiVo. The software for the system
is written in Javascript, runs on web browser. We used YAMAHA NSX1-
board for a singing voice synthesizer. The MIDI keyboard and the singing
voice synthesizer are connected to the computer by USB, and the web browser
communicates with them by Web MIDI API.

4.5.2 Accuracy of The Alignment Algorithm
First, we examined robustness against mistakes. Table 1 shows the song list
used for our experiments. The original vowel sequences are defined as the
vowel sequences extracted from the lyrics of the original songs. We generated
random error vowels by the uniform sampling from six vowels (“a", “i", “u",
“e", “o", and “n"), and inserted them into random positions between the two
vowels of the original vowel sequences. The inserted positions are selected
randomly according to an uniform distribution ranging between one and the
total number of characters in the song minus one. Note that we prohibited
inserting more than three error vowels sequentially. We inputted this vowel
sequences containing error vowels into our system as a source and examined
the error rate of the output characters compared to the original lyrics.

The relationships between the numbers of inserted errors and the output
error rate are shown in Figure 4.11. Although over 30% errors cause a fatal de-
crease in accuracy, the system maintains more than 90% accuracy for 10∼20%
errors. These results show that the system is reasonably robust against errors
in vowel input.

As a second experiment, we examined robustness against jumps to irregu-
lar destinations in the lyrics. The songs used for this experiment are the same
as those used for the previous experiment. We randomly rearranged the lines
in the registered lyrics (see Figure 4.5), and used their vowel sequences as in-
put. When the input vowel sequence moves to the next randomly rearranged
line, the system first makes several errors because it expects the next line in the
original lyrics. However, the system eventually identifies the correct line after
observing several incoming vowel keys. We counted the maximum number
of incorrect output characters before identifying the correct line.

The result of this experiment is shown in Table 1 as following capability.
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Table 4.1: The song list used for experiments. The following column represent
the numbers of output wrong characters after jumping the positions. These
numbers represent higher abilities as lower number.

Title Author Characters Following
1. Senbon Sakura KurousaP 616 3
2. World is Mine supercell 628 2
3. Melt supercell 432 2
4. HatsuneMiku no Shoushitsu BousouP 1373 4

The result shows that robustness against jumps to irregular destinations is
strongly affected by the total number of characters in the lyrics. However,
even for “HatsuneMiku no Shoushitsu", which has the most characters in
our experiments, our system successfully finds the correct segments within a
few characters, which is shorter than a single morpheme. This result shows
that the system is reasonably robust against improvisational jumps during
performance.

4.5.3 Playability
We examined the playability of our system by a professional pianist. We
selected a famous Japanese song “SenbonSakura" (Author: KurousaP) for
performance. This song is one of the Japanese songs with the fastest tempo,
and contains very fast movements between the characters in the lyrics. We
picked this song as a stress test for the system. The time for practice was one
week, one hour per day.

A portion of the actual performance scene for this song after practice is
shown in the supplemental video. The total length of the performance was
four minutes, five seconds. The video shows that this song can be performed at
the original tempo. The pianist adds several musical expressions including ad-
lib modification of the melody. These expressions can’t be performed using
any existing methods. Additionally, the system outputted plausible lyrics,
even though the pianist often made mistakes and improvisational changes.

In addition, we recruited five participants and played the recorded sound
of this performance for them. We requested them to report the number of
times they felt an unnatural singing voice sound. No one reported this more
than three times.

Furthermore, some users including authors have tried to play Formant.Bros’
system [93] and Yamamoto et al.’s system [144] for the comparisons of the
playability. However, no one was able to play the song used in our experiment
with their systems at the same tempo. This shows that it is almost impossible
to play such a fast song with existing systems.

4.5.4 Workshop
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Figure 4.9: The robustness against mistakes during performance. The hori-
zontal axis: The ratio[%] of numbers of the inserted error vowels to the total
numbers of characters in the song. The vertical axis: The correct rate [0,1].
Higher value represents higher accuracy.

We held a workshop with ten amateur pianists, all of whom have experi-
mented with piano or other musical keyboards for more than five years. We
gave the players a musical score for our system and asked them to practice.
We selected a standard jazz song “Autumn Leaves" (Music:Joseph Kosma,
Lyrics:Junko Akiyama) with the tempo 120 [BPM] for practice. All partic-
ipants had already known this song before the workshop. We printed the
score at this study. The user checked the vocal singing sound only by hearing.
The time to practice was three days, 30 minutes per day for all participants
(Figure 4.10: center and right).

We monitored the ratio of the number of vowel input mistakes to the total
number of characters of the song in the case of playing the musical scores
strictly by repeating practices. The result is shown as Figure 4.11. This figure
shows the relationships between the ratio of the different played notes to
the original and practice times of each participant. We found that the ratio
decreases rapidly with repeating practice. Then, we verified that our system
doesn’t require any further skills for common pianists.

After the practice, we requested the participants to play the song to an
accompaniment for more than six choruses repeatedly, while modifying the
melodies and jumping freely ad-lib. We provided musical score including
several lyrics list for each participant during the experiment. As described in
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Figure 4.10: left: The system setup. center and right: Two scenes at the
workshop.

§Introduction, most existing approaches, such as melody fitting, can’t be used
for this scenario. We included this actual scene in the supplemental video.
The video shows each pianist playing the song while modifying the melody
significantly ad-lib. The participants re-mixed the pieces of the predefined
lyrics flexibly. This new type of musical expression is enabled by our system.
Note that all participants we employed already had a skill for improvising
music by piano before the experiment. So, special trainings for improvisation
were not required, even including the control of lyrics.

After the workshop, We conducted individual interviews. At the inter-
views, we asked three questions. First, about the difficulty of the system:
easy, neutral, difficult, impossible. If difficult or impossible, we were going
to ask the reason. But, all participants answered it’s easy. Second, about the
playability. We asked whether the user has any dissatisfactions for expressing
the musical phrases they want. Finally, we requested free comments.

Some participants mentioned that they feel discomfort at first because they
already have substantial experience playing piano and can read musical scores,
but the vowel keys we assigned on the musical keyboard don’t correspond to
the heard pitches of the synthesized sound. However, they also mentioned that
the sense of discomfort decreased gradually as they adjusted to our system.

Nearly all participants said that the system allow input mistakes to some
extent and it was a very nice feature. They added that practice for our system
was substantially easier than they expected, because the lyrics are represented
as a standard musical score. We consider these to be significant merits of our
system.

Others said that they often worried about the latency of the “S" consonant
when voicing. The characters that have the “S" consonant are sibilant. Sibilant
characters are voiced after a comparatively long breath sound, and the timing
of voicing the vowel is perceived as the rhythmic timing. Then, if the user
presses a key to start a voicing sibilant on the exactly the timing in the rhythm,
the sound will be perceived late. In the case of voicing by mouth, we usually
overcome this problem through practice, intentionally beginning to voice a
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Figure 4.11: The amount of vowel input mistakes made by test participants
plotted against the number of practices. The vertical axis shows the ratio of
the errors to the total numbers of characters in the song and the horizontal
axis shows the number of practice.

character with the “S" consonant slightly earlier. However, the participants
had not mastered it for our system in our limited study. We think that this
requires substantially more training.

4.6 Future Work
An important future work is more quantitative evaluation of the playability.
Our system predicts the lyrics in the dataset from user’s input. However,
how the result is responded to the user’s intend has been not sufficiently
verified in our experiments. We could verify this by investigating the matching
rate between a participant’s eyes focus on a musical or lyric score and the
system’s output using eye tracking sensor. An another possible approach is to
make the participant to follow requested lyrics including position jump on a
musical score, and investigate the correct rate of the output. Such quantitative
experiments remain for future work.

Several limitations are observed in our work, which remain to be addressed
in future work. Our approach to controlling a singing voice synthesizer was
dependent on the specific properties of the Japanese language, which is a
Mora language with only five vowels. Consequently, it is difficult to apply
to other languages such as English. Thus, applying our method to various
languages is a future direction. We are interested in how the structure of
song lyrics and the user’s performance can be learnt with machine learning
model at precomputation phase. For example, in our system the interpretation
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of the structure of a song depends on manual annotations by the user. We
expect that it will be convenient to have the system automatically extract this
structure by using natural language processing techniques. In addition, our
method has many parameters, such as the state transition probabilities in the
HMM, determined empirically. Automatic learning and adjustment of these
parameters is an important task left for future work.

Another future direction is to control the continuous parameters of com-
putational sound by low DoFs input device. In this chapter, we focused
on controlling the lyrics and melodies of a song. In this context, lyrics are
switching parameters (it switches from a character to an another character
discontinuously). However, continuous parameters such as volume and tim-
bre play quite important role in controlling computational sounds, which was
not addressed in this chapter. By addressing this problem, we could con-
trol various computational sounds beyond a singing voice synthesizer. Thus,
controlling continuous parameters by low DoFs input device is a challenging
direction for future work.

4.7 Conclusion
In this paper, we proposed a practical user interface that enables the use of
real-time singing voice synthesizer at an improvisational live performance by
inputting the lyrics and melodies of songs simultaneously using a standard
musical keyboard. The proposed system allows arbitrary movements within
the lyrics including jumping, backtracking, and mistakes by estimating plausi-
ble lyrics from vowel sequences using a probabilistic model. Additionally, the
lyrics for our system can be described using a standard musical score making
it easier to learn. As a result, we achieved very flexible control of lyrics and
melody using our system at real-time rate that enabled live improvisational
performance of distinctive musical expressions.
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Chapter 5

Fully Perceptual Based Calibration
of 3D Audio Spatialization for A
Specific User

5.1 Introduction
The human auditory system perceives the directions of incoming sounds

using both ears. According to the direction from which a sound arrives to the
head, an arrival time difference to the left and right ears can be determined.
In addition, the sound is intricately diffracted by the shape of the person’s
head and ears. This diffraction effect depends on the frequency and incoming
direction of the sound. Therefore, the spectrums of the sounds that arrive at
each ear are modified. We can recognize the localization of the sound by these
sound modifications. These two-channel transforms of the spectrums can be
represented as finite impulse response filters and are called human-related
transfer functions (HRTFs).

Three-dimensional (3D) spatialization of sounds in virtual environments
(e.g., VR and games) requires HRTFs to reproduce incoming sounds from
various directions using a two-channel headphone. However, HRTFs are
highly specific to individuals because they depend considerably on the shape
of the user’s ears and head. We call the proper HRTFs for individual users
as an individualized HRTFs. We know that inappropriate HRTFs can lead
to improper localization of the sound source accompanied by an unexpected
equalization of the timbre. Such improper localization especially includes
front-back and up-down confusions [138, 96, 92]. Because of this, we must
essentially measure the individualized HRTF for each user. The measurement
procedure requires special equipment, including an anechoic chamber, as well
as time-consuming and tedious efforts of the user. Thus, using individualized
HRTFs for each end user has been impractical. This may explain why 3D
sound rendering has not been as popular as visual rendering.

To address these problems, we propose a novel fully perceptual-based op-

58



HRTF Data set

The system presents a pair of test signals (A/B)

The user answers which signal is better.

The system optimizes

HRTF Database

Adaptive Variatonal AutoEncoder

Output: New HRTF fitted for the user

Non-individual factor
Individuality 4
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Calibration by the user
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Input: Perceptual feedback from the user
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Figure 5.1: The concept of the system. The user can calibrate their own
Human Related Transfer Function (HRTF) for 3d audio spatialization. The
system presents a pair of test signals, and the user feedbacks which one is
perceptually better. Using this feedback task iteratively, our system optimizes
a personalization weight for the user to obtain an individualized HRTF. The
personalization weight blends individual factors of HRTF which are extracted
from a public HRTF data set during training.

timization of HRTFs for individual users (Figure 5.1). Our system requires
neither special equipment nor tedious measurement procedures. The user
only needs to provide several feedback rating pairwise comparisons of test
signals provided by the system based on his or her individual perceptions
during calibration. This dramatically reduces the user’s efforts at obtaining
individual HRTFs. Our algorithm uses a novel adaptive variational AutoEn-
coder [71, 112] trained with a publicly available HRTFs data set. During
training, it decomposes HRTFs in the data set into factors based on individual
users and the rest. During calibration, our adaptive variational AutoEncoder
generates individualized HRTFs for a new user by blending several individu-
alities with personalization weight in nonlinear space. An advantage of this
algorithm is that it does not require optimizations for all the spherical direc-
tions around the head because the personalization weight is shared within all
the directions. Instead, it covers all directions by running optimizations for
only a few candidate directions, which has been not addressed in previous
studies.

We evaluate our algorithm by several quantitative validations and a user
study. The cross validation shows that our algorithm has an ability to gen-
erate a fitted HRTF for a new user. In the experiment using synthetic data,
our algorithm accurately predicts 3D acoustic field around an obstacle which
demonstrates the ability to estimate a new HRTFs. Finally, we show that the
individualized HRTFs obtained using our method outperforms best HRTFs in
the data set in a user study with 20 users.

The contributions of this study are as follows.
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The optimized HRTF can be used in an arbitrary platform. 

Figure 5.2: After calibration, our system outputs the individualized HRTF in
an arbitrary required format for each rendering platform.

1. We propose a fully perceptual-based optimization method to obtain in-
dividualized HRTFs for users, which dramatically reduces the user’s
effort (Section 4).

2. We present a novel adaptive variational AutoEncoder model that iso-
lates factors based on individual users during training and synthesizes
individualized HRTFs by blending them in a nonlinear space during
calibration (Section 5).

3. We present a hybrid CMA-ES, assisted by a local Gaussian process re-
gression, that accelerates sampling-based optimization of a black box
system through user feedback by estimating gradient information (Sec-
tion 6).

5.2 Related Work
In this section, we describe existing works for calibrating 3D audio spatializa-
tion and several techniques for representing human related transfer function
in a reduced space.

Measurement: The straightforward approach to obtaining individual
HRTFs involves the actual acoustic measurements in an anechoic chamber.
Loud speaker arrays are spherically arranged around the subject’s head and
two small microphones are inserted into both ears. The subject sits with his
or her head placed at the center of these spherical speaker arrays and is in-
structed to remain still during the long measurement periods. Specific test
signals (such as sine sweep signals) is played one by one from the different
loud speakers and the signals at the microphones are recorded. By comparing
these recordings with those obtained from a microphone placed at the center
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1. Training (Optimize HRTF generator using given HRTF datasets)

2. Calibration (Optimize individualization weights using given user feedback)
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Output
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(decoder)
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Figure 5.3: An algorithm overview. Our algorithm consists of two phases. At
the first phase, we train a neural network using a public HRTF data set. At
the calibration phase, the system shows test signals generated from the HRTF
generator, and the user provides feedbacks according to his/her perceptual
direction of the signal. Using this feedback information, the system optimizes
personalization weight which is used for the input of HRTF generator to make
a new HRTF for the user.

of the speaker arrays (excluding the subject), the individual HRTF can be com-
puted. Many variants exist for conducting these measurements. However,
because such measurements usually require expensive equipment as well as
tedious procedures, using these measurements with each end user is imprac-
tical and thus prevents their widespread use. An alternative measurement
approach is to use reciprocal method [157][89] that much reduces the mea-
surement time. This approach swaps the loud speaker and the microphone
positions. It inserts a micro-speaker into the subject’s ear and places several
microphones around the subject. To measure the HRTF, test signals are played
from the inserted speakers and captured by the microphones. However, this
has a limitation to capture only the HRTF at a narrow middle range frequency
because it highly depends on the specification of such the small loud speaker.

Numerical Simulation: To avoid actual measurement in an anechoic
chamber, many numerical simulation techniques for HRTF have been pro-
posed. These techniques use the scanned 3D mesh of a human’s head and
ears, and solve an acoustic wave equation to simulate the sound propaga-
tion around the head. Two major approaches for solving this acoustic wave
equation are the boundary element method (BEM) [62, 66, 39, 59] and the
finite-difference time-domain (FDTD) method [94, 95, 141]. However, these
techniques have three critical limitations. First, the simulation usually con-
sumes tens of hours or a few days when using an auditory desktop computer.
Second, the user must scan the 3D mesh data, which requires special equip-
ment and additional effort. Third, the scanned mesh of the ears lack the
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details of the geometry that considerably affects the high frequency domain in
an HRTF. To address the first problem, Alok et al. [91] improved the compu-
tational speed of the simulation using an adaptive rectangular decomposition
technique (ARD). They achieved a computation time of less than 20 min for
a broadband HRTF using auditory machine. However, it still requires the
detailed mesh of head and ears which is difficult to obtain.

To avoid the tedious 3D mesh scanning procedure, DeepEarNet [64] esti-
mates the 3D geometry of a user’s ears from RGB photographs using a deep
convolutional neural network and then numerically simulate the HRTF using
BEM. This system extracts the feature parameters of the ears of the user from
the photographs of the ears captured by the user him- or herself from two
directions through manual annotations. However, sufficiently capturing the
details of the ears in order to estimate the high frequency domain of the HRTF
is difficult.

HRTF Optimization: To obtain fitted HRTF for a user, Zotkin et al. [156]
attempted to select the best matching one from an existing data set. They
measured pinna parameters of the user and selected an HRTF of a subject
who has the closest pinna parameters. However, this has no guarantee that
the picked one is the best HRTF for the user. Several studies have been
conducted to optimize an HRTF for an individual user using machine learning
techniques. Josef [47] asked users to adjust the principal component weights
(PCW) of the HRTF manually using a slider on a user interface (UI). This was
accomplished using listening tests. However, manipulating the unintuitive
PCW parameters directly was found to be difficult. Yuancheng et al. [85]
assumed the “blackbox" human auditory system, which takes a sound cue as
input and returns the perceptual direction as a Gaussian process regression
model and fits the HRTF for the “virtual" user model using AutoEncoder.
Their results imply that nonlinear dimensionality reduction better reconstructs
HRTFs than do linear space reduction methods such as principal component
analysis (PCA). However, the AutoEncoder they employed, which was trained
with the consolidated data of multiple subjects, may spoil the individualities
of an HRTF. In addition, their experiments were merely a virtual simulation
under rather limited conditions and had not been applied to actual problems.

A major approach to optimizing an HRTF for a new user using machine
learning is to solve a regression problem that predicts a low-dimensional re-
duced HRTF from the anthropometric information of the user’s head and ears.
Principal Component Analysis (PCA) [52] and independent component anal-
ysis (ICA) [50], which reduce the dimensionality of HRTFs in linear space,
have been widely used. Bilinski et al. [10] represented the sparse vector
of a new subject’s anthropometric features as a linear superposition of the
anthropometric features of a training subset. They then obtained the indi-
vidual HRTF by using those features as weights to interpolate the HRTF in
the training dataset. Various nonlinear regression techniques such as neural
networks [48] and support vector regression (SVR) [49, 136] have also been
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Figure 5.4: The user interface pane for gathering the user feedbacks. It runs
on web browser. When the user push A (red) or B (blue) button, one of the
test signal pair is played. The 3D graphics shows the intended direction of the
system from the side and top views. The user rates the pair by 5 pt scale with
radio buttons and submit it. Finally, the user exports his/her individualized
HRTF data by pressing the export button.

proposed. However, these regression models cannot adequately express the
complex relationships between anthropometric features and low-dimensional
HRTFs.

Felipe et al. [37] proposed a state-of-the-art approach to optimize horizontal
plane HRTFs using manifold learning through a nonlinear regression model.
This approach uses anthropometric information that is actually measured for
each user by professional authors. The dimensionality of the HRTF included
in a data set is first reduced using IsoMap in a nonlinear space. Next, a re-
gression problem is solved using a neural network. The neural network then
processes the anthropometric data of the user and outputs a corresponding
reduced (low-dimensional) HRTF. Finally, the system generates the individ-
ualized (high-dimensional) HRTF by means of a linear superposition of the
neighboring vectors of the reduced HRTF in the IsoMap. However, in ad-
dition to the difficulty of measuring the anthropometrics precisely for each
user, these anthropometric-based approaches mostly rely on low-dimensional
heuristically defined anatomical measures, which are not necessarily sufficient
to describe the complicated shape of the ears of humans.

5.3 Algorithm Overview
Our algorithm consists of two steps (Figure 5.3): 1) Training of an HRTF
generator, which involves learning the individual and non-individual features
from an HRTF dataset (§5.4). 2), Calibration of the HRTF generator, which
involves individualizing an HRTF generator for each specific user (§5.5). In the
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first step, we train our HRTF generator using an HRTF data set (we used CIPIC
data set [2]). The HRTF generator is a generative neural network model that is
based on an extension of a conditional variational AutoEncoder [69, 121]. We
extend it by adding 3D convolutional layers (§5.4.5) designed for HRTF input,
as well as novel adaptive layers (§5.4.6) that separate the individuality and non-
individuality factors of the users in a nonlinear space. This neural network
takes a set of HRTFs, a continuous vector, and a one-hot vector as input. The
continuous and one-hot vectors represent a sampled incoming direction of a
sound and subject label (which subject’s data are inputted), respectively. It
then reconstructs HRTFs by extracting the latent variables as output. After
the training of the generative model, our neural network can generate a new
HRTF for a given direction around a head using the following three types
of input: the latent variables, an intended direction, and a vector defined
as personalization weight. Personalization weight represents the amount of
contributions from individuals in the dataset in blending.

In the second step (calibration), we optimize the personalization weight
to generate an individualized HRTF for the target user. This step involves
interaction with the user, as described in §5.3. The system optimizes the per-
sonalization weight to minimize the difference between the intended spherical
direction of the system and the direction perceived by the user. After this cal-
ibration, our system can output an arbitrary HRTF format. Most real-time
rendering platforms (e.g., game engines) store HRTF data at discrete direc-
tions internally and interpolate them at runtime. The system outputs HRTFs
at the required directions for each platform and these can be used by an
arbitrary rendering scheme depending on each platform (Figure 5.2).

5.4 User Interface
The user obtains individualized HRTFs by running a one-time calibration that
roughly consumes 15∼25 min. The calibration application runs on a web
browser (Figure 5.4). The system first presents a pair of test signals and its
intended direction. The user then plays the test sound by pressing an A/B
selection button. Each of these two test signals is generated from different
HRTFs (personalization weights), respectively, and has the same intended di-
rection. We randomly select an audio source from 10 predefined test sounds
(e.g., speech, helicopter, short music phrase) and then filter the audio using
the generated HRTFs. The intended direction continuously moves spherically
around a head and is shown as a moving sphere from side and top views.
The user listens to the test signals and provides feedback by selecting one of
the 5-scale options that represents the sound that is perceptually closer to the
intended direction shown on the screen with “1" meaning that one of two
test signals is definitely better, and “5" meaning that the other test signal is
definitely better. Thus, “3" means neutral. By iterating this simple pairwise
comparisons (approximately 150∼200 times), the system automatically indi-
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Figure 5.5: The representation for an incoming direction of a sound.

vidualizes the HRTFs by optimizing the personalization weight for the target
user. The user can stop the calibration at an arbitrary timing (usually when
the user satisfied or can not distinguish two test signals). This approach has
two advantages. First, obtaining individual HRTFs for users is much easier
with this than previous approaches. Second, the effects caused by the acous-
tic properties of the user’s headphones can be considered by using the same
headphones for calibration and runtime, something that was not addressed in
previous studies.

5.5 Training with Public HRTF Data Set

5.5.1 Data Set
We used the publicly available CIPIC data set [2] which contains HRTFs of both
ears actually measured in an anechoic chamber for 45 subjects at 25 azimuths
and 50 elevations. In total, it includes 1250 sample directions of HRTF per
subject and ear. Each set of data for a direction, subject, and ear is recorded as
an impulse response of 200 wave samples with a 44.1kHz sampling rate audio
file. Impulse signals are played by a loud speaker array spherically arranged
around the head. They are recorded using two small microphones inserted
into the ears of each subject. Instead of using the CIPIC angle representation
(azimuth and elevation), we redefine the spherical coordinate as yaw and pitch
(Figure 5.5). The yaw θ and pitch angle ψ are measured in a head-centered
interaural-polar coordinate system. The yaw is the angle that varies from
the back left −π to the back right π. The pitch angle varies from the bottom
−π/2 to the top π/2. We arrange all the sampling points on a unit sphere
as 3D vertices and construct a sphere mesh with Delaunay triangulation.
This triangulated unit sphere is used for obtaining HRTF data at an arbitrary
direction by means of bilinear interpolation. Note that CIPIC dataset has a big
hole at the bottom. Because of this, the bilinear interpolation could introduce
some artifacts. To alleviate this, one can use arbitrary HRTF interpolation
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Figure 5.6: A comparison of phase (top) and time signal (bottom) reconstruc-
tion. Direct phase reconstruction approach (blue) outputs large error that
causes unnatural noise in time signal.

methods [84, 28] alternatively.

5.5.2 Input Format
During training, our neural network take a sampled direction y (vector), a
subject label (one-hot vector) s, and a set of HRTFs x from around the spec-
ified direction of the subject as input. It then outputs the reconstructed x′

using an adaptive variational AutoEncoder. We train this model to have x′
be similar to x. We represent a direction as y ∈ R26, whose elements are
the weights to an overcomplete basis of 26 unit vectors evenly distributed in
all directions ∈ R3 (red points in Figure 5.5). For a given direction vector
u ∈ R3, the system identifies surrounding four unit vectors (P1, P2, P3, P4),
and gives weights (w1, w2, w3, w4) to them so that w1 = s · t, w2 = (1 − s) · t,
w3 = s · (1− t), w4 = (1− s) · (1− t) where Y awu = s · Y awP1 + (1− s) · Y awP2 ,
Pitchu = t ·PitchP1 +(1− t) ·PitchP3 . The weights of the other 22 unit vectors
are set to zero. We do not use a 3D vector to represent the direction because a
neural network tends to be insensitive to the fluctuation of continuous values
on a node while being more sensitive to the binary-like activations on each
node [24] The subject label s ∈ RS becomes a one-hot vector that represents
the inputted subject data. In our experiment, S became 45 dimensions because
the CIPIC data set includes HRTFs of 45 subjects. If x is the p-th subject’s, the
corresponding element of s became 1; otherwise, 0.

Our neural network treats HRTF in a spectral domain. The original HRTFs
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Figure 5.7: The input data structure of our neural network (We call HRTF
patch). This HRTF patch has voxel like data structure, which encodes spatial
correlations of HRTFs. Each voxel has four properties (LR channels of power
spectrums and time signals) like color channels of image.

in a time domain can be recovered from both the power spectrum and phase
information outputted from the system. For the power spectrum, we com-
pute 256 rectangular-windowed FFTs of each HRTF impulse response and
extract only the minimally required power spectrum (128 dimension vectors
of LR channels). However, for phase information, we do not use spectral data
(angles) directly because the reconstruction error of phase angles are quite sen-
sitive. Actually, previous methods have not solved the regression problem of
phase. Alternatively, we solve a rough regression problem of time domain sig-
nals, and estimate phase information from them. We use the first 128 samples
of the time signal of an HRTF as input to our neural network. In summary, we
reconstruct time signals through a neural network, and indirectly estimating
only the phase angle (discarding the power spectrum information) from them.
Using both the estimated phase and power spectrum, we reconstruct the final
HRTFs. This indirect approach to estimating the phase reserves the rough
shape of the impulse response, which is difficult to accomplish through direct
phase estimation. Figure 5.6 shows the comparison of phase reconstruction
between our method and direct phase estimation. The direct phase regression
approach does not reconstruct the phase at all, but rather destroys the shape
of the time signal. By contrast, our method successfully simulates the original
phase information, thus preserving the time signal shape.

To construct the HRTF input data structure of x, we include not only the
impulse response of the HRTF at the exact sampled direction y, but also its
several surrounding neighboring impulse responses (Figure 5.7). In total, we
sample 25 directions with 5×5 rectangular grid shapes, in which the center
becomes the HRTF at the direction y. The stride of the grid is±0.08π rotations
for both yaw and pitch on a unit sphere direction from the head. In addition,
we obtain the power spectrums and LR time domain impulse responses at
each direction using bilinear interpolation in frequency domain on the unit
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Figure 5.8: The output data structure .

sphere [139, 76]. To reconstruct an interpolated time signals, we use both
interpolated power spectrums and phases. We call this 5×5 grid that stores
HRTF information as the Patch. This patch representation is expected to
encode the correlations with surrounding directions. Finally, this input data
structure becomes a 3D voxel patch with 5 × 5 × 128 dimensions (128 power
spectrums or 128 sample time signals) and each voxel has four color channels
(power spectrums and time signals of LR channels) as shown in Figure 5.7.
This becomes the input x of our neural network.

5.5.3 Output Format
Our neural networkreconstructs the HRTF x′ to minimize the difference be-
tween the input and output HRTF with an AutoEncoder manner. However,
solving a regression problem of a signal that shows a large fluctuation (e.g.,
time domain audio signal and power spectrum) using a generative neural
network is difficult. This is because a neural network smoothes the output
throughout the training data. Therefore, the trained result tends to be an “av-
eraged signal," which causes a fatal error. To address this, we use a quantized
format similar to WaveNet [133]. WaveNet predicts time domain audio signals
using an image-like quantized format (width: time, height: amplitude), which
successfully solves a regression problem of large fluctuated signals. Similarly,
we quantize the power spectrums and time signals of HRTFs into 256 steps us-
ing µ-law compression. As a result, the output format becomes an image-like
representation (Figure 5.8). Unlike in WaveNet, we do not use one-hot vectors
for the final layer nor the SoftMax function. The SoftMax function generalizes
all the output of the neural network into [0, 1] probabilities. This is equivalent
to solving an unconstrained optimization problem which requires extensive
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Figure 5.9: Our neural network architecture. Our neural network is an exten-
sion of a conditional variational AutoEncoder, which reconstructs HRTF from
the inputted HRTF through the latent variables.

training data. However, the size of our setting’s training data is considerably
less than that of WaveNet, which can lead to optimization failure. Alterna-
tively, we construct an array of normal distributions on each quantized vector,
in which mean values are equal to each quantized value. In addition, we set all
the variances to 5 (Figure 5.8) and minimize the mean squared error of these
multiple normal distributions. This addresses the aforementioned problem
because it is equivalent to constraining the value range of the solution. To
generate a final HRTF, we first compute each quantized value by maximum
likelihood estimation from the output and then obtain the result by decoding
the quantized values using inverse µ-law compression.

5.5.4 DNN Architecture
Figure 5.9 shows our neural network architecture which has three blocks

(please see Appendix E for the detail). Our neural network is an extension of a
conditional variational AutoEncoder (Appendix D). Three extensions are used:
1) We introduce 3D convolutions for the input, which are specifically designed
for our HRTF patch. 2) We propose an adaptive layer that decomposes the
individual and non-individual factors during the training. 3) We introduce
residual networks to prevent gradient vanishment. This neural network uses
an HRTF patch x, a sample spherical direction y, and the subject label s
as input, and reconstructs x′ by extracting the latent variables. We divide
the HRTF patch x by each channel and input them separately as the power
spectrum channels of LR xfl and xfr and the time signals of LR xpl and xpr.
Similar to the conventional variational AutoEncoder, the architecture has an
encoder and a decoder. The encoder extracts latent variables zmean and zvar
from the input, and the decoder outputs reconstructed HRTFs in the format
described in the previous section from the sampled latent variables z.

5.5.5 3D Convolutional Layer for HRTF Patch
As shown in Figure 5.9, we embed 3D convolutional layers for the input of
the variational AutoEncoder at the encoder. We expect these convolutions
to encode the correlations between the HRTF at the sample direction and its
surrounding neighboring directions within an HRTF patch. A typical 3D
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Figure 5.10: 3D convolutional layer for HRTF patch.

convolutional layer [127] in a neural network shares the filter coefficients of
the kernel over the weight tensor. Instead of using this type of layer, we
employ a convolutional layer that shares the kernel coefficients only in spatial
domains (the yaw and pitch axis) but uses different filters along the frequency
axis (Figure 5.10). This is because the spectral correlation of an HRTF with its
surroundings generally has a different structure between the lower and higher
frequencies as a result of the frequency dependent diffraction by the subject’s
head and ears.

We use two convolutional layers for each channel (for four total channels).
We set the kernel size of each convolution as 3×3×3 (yaw× pitch× frequency
axis), and add zero padding to the frequency axis only. For all directions,
we set the stride as 1. Thus, the first convolutional layer transforms each
channel of a patch from 5×5×128 to 3×3×128, and the second layer further
transforms them to 1×1×128. Note that we did not add bias parameters to
this convolutional layer in our experiment.

5.5.6 Adaptive Layer
Our primary technical contribution is decomposing the individual and

non-individual factors from an HRTF dataset during training. This technique
uses a novel type of neural network layer called an adaptive layer, which
isolates the latent individualities into a tensor from the weight matrix in an
unsupervised manner. In addition to the input vector x, this adaptive layer
uses a one-hot vector s during training and a continuous vector β during
runtime as input.

Our adaptive layer is based on tensor factorization that employs stochastic
gradient descent optimization [72]. A common layer in a neural network can
be written as a combination of linear and nonlinear functions,

y = F (x) = f(Linear(x)) = f(W · x+ b), (5.1)
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Figure 5.11: An adaptive layer that decomposes the function approximation
into individual feature and non-individual feature. A one-hot vector s works
like switching function depending on the inputted subject’s data. ⊗ denotes
tensor product.

where x ∈ RM and y ∈ RN are the input and output of this layer, respectively.
Linear() denotes a linear layer function of the neural network. W ∈ RN×M

is a matrix, b ∈ RM is a bias vector, and f() is an arbitrary nonlinear function
(e.g., Sigmoid). We decompose this W and b as follows by introducing a new
parameter s (Figure 5.11):

y = f(Adapt(x, s)) = f(A⊗3 s ·W ′ · x+B ⊗3 s · b′), (5.2)

where s = [s1, ..., sS]
T , sk ∈ {0, 1} is a one-hot vector that represents the

subject to which the inputted data belongs. A ∈ RN×M×S , and B ∈ RM×M×S

are tensors. W ′ ∈ RN×M is a matrix, and b′ ∈ RM is a vector. ⊗d is the dot
product between the d-mode expansion of a tensor and vector. We replace
the linear layers in the variational AutoEncoder with this adaptive layer, and
iteratively input the HRTF data of a randomly selected subject and direction
during optimization. The adaptive layer gradually inserts the individualities
of the inputted HRTF patch into the tensor A and B as if the s becomes the
switcher with respect to the selected subject. In addition, non-individualities
that are shared with all subjects are included in the matrix W ′ and the vector
b′ during stochastic optimization.

This adaptive layer allows us to interpolate, emphasize, diminish, and
blend each individuality in the trained dataset by adjusting the personaliza-
tion weight vector β ∈ RS at runtime rather than using s as an additional
input. To achieve a similar but not necessarily identical objective, several ap-
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Figure 5.12: A comparison between hidden units interpolation approach
(bottom-left) and our adaptive layers (bottom-right). We trained two net-
works with three nonlinear functions A, B and C (Top). Red, blue, green lines
at bottom two graphs represent the reconstructed functions respectively. Pur-
ple lines denote a blending of three functions equally, and black line denotes
a blending of A and B. Hidden units interpolation approach diminishes the
details of each function while our method preserves them.

proaches exist that morph data into different categorized data continuously by
interpolating several sampled hidden units extracted with AutoEncoder (e.g.,
using procedural modeling of a 3D mesh [153] and controlling and stylizing
the human character motion [45]). However, these approaches are limited in
terms of their ability to distinguish many nonlinear functions, which is cru-
cial to solving our target problem. Figure 5.12 shows a comparison of three
simple functions morphing between hidden units interpolation approach and
our approach after performing the same number of iterations (although this
number is unfavorable with our approach). We use a dual-stacked AutoEn-
coder as shown in Figure 5.13) for our experiment. (Note that for hidden units
interpolation, we replace each adaptive layer with a common fully connected
layer.) The hidden units interpolation approach diminishes each feature of the
functions. This is crucial to solving our target problem because sharp peaks
and dips in the spectral domain are commonly important specifications for an
HRTF. However, our adaptive layer successfully enables us to reconstruct the
details of each feature and blend them.

In addition, we introduce residual neural networks [42] into the adaptive
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Figure 5.13: AutoEncoder network for validation of our adaptive layer.

layers in the encoder (Figure 6.2) and decoder (Figure 6.3) in order to reduce
the training error of deeper neural networks. A residual network has a shortcut
connection as given by the following equation:

y = Adapt(x, s) +U · x, (5.3)

where U denotes a matrix to project the input x into the output dimension
space of y.

5.6 Optimizing for an Individual User
After training, we calibrate the HRTF generator (the decoder of the neural net-
work) to obtain an individualized HRTF for a user. To this end, we assume the
individuality of the optimized HRTF for an individual user can be expressed as
a blending of the trained individualities of HRTFs in the dataset in a nonlinear
space. Thus, we now replace the binary subject label s in Eq.(5.2) with a con-
tinuous personalization weight β = [β1, ...βS]

T which is called personalization
weight. When this β is used, Adapt(x, s) becomes Adapt(x, β). Each βi takes
[0,1] continuous value while s is the binary one-hot vector, and is constrained
as
∑S

i βi = 1. Finally, the adaptive layer in this phase is reformulated to

y = Adapt(x, β) = f(A⊗3 β ·W ′ · x+B ⊗3 β · b′). (5.4)

This representation means the optimized individualization transformation
matrices to the user can be expressed asA⊗3β andB⊗3β, which are blendings
of the individualities of the subjects included in the trained data set. Similarly,
the latent variables z, which are necessary for generating a new HRTF, are also
transformed using β as:

z̄mean = Zmean(y) · β, (5.5)
z̄var = Zmean(y) · β, (5.6)

z̄ ∼ N(z̄mean,
1

2
z̄var), (5.7)
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where Zmean ∈ RL×S , Zvar ∈ RL×S are matrices in which each column is the
pre-computed latent vector (z1mean(y), ...z

S
mean(y)) and (z1var(y), ...z

S
var(y)) that

correspond to the subject. Furthermore, zsmean(y) and zsvar(y) are switched by
the direction y. Note that zsmean(y) and zsvar(y) are pre-computed using the
trained model for each direction before this step is performed. L denotes the
dimensions of the latent variables, and we use 32 for our experiments. We use
the blended z̄ for the latent variables in the individual feature vector of the
user.

The system optimizes the personalization weight vector β for an individ-
ual user by fixing the other parameters A and B, as well as the matrices W ′

and bias vectors b′. This approach has the advantage of dramatically reduc-
ing the DoFs of the design variables for optimization purposes because it can
eliminate the need for multiple optimization runs when considering all spher-
ical directions. This means optimizing only a blending vector β covers the
individualities of the user through all directions.

5.6.1 Optimizing Personalization Weight through User Feed-
back

The optimization procedure for the personalization weight β is interactive
with the user as described in §5.3. The user gives relative scores for two indi-
vidualization weights βi and βj . With this input, our optimization problem is
reformulated into a minimization problem arg minβ Q(β), where the absolute
cost values Q(β) are computed from the relative scores as described in a later
section. By running this procedure iteratively, the system optimizes the β.

To optimize this black box system, Bayesian optimization [13] is widely
used. However, it requires absolute evaluation values at each step, which
are not immediately available in our setting. Alternatively, we use a hybrid
optimization scheme [17] as an evolutional strategy (we use CMA-ES [40]) and
a gradient descent approach (we use the BGFS-quasi-Newton method). The
optimization procedure is shown in Algorithm 1. We introduce local Gaus-
sian process regression (GPR) [88] to accelerate the optimization. This method
estimates the local landscape of the cost function from discrete sampling to ob-
tain the gradients. Figure 5.14 shows a comparison between with and without
using gradient information estimated by GPR. We minimize the EggHolder
function for this evaluation using four conditions (N=8, 32). CMA-ES requires
N times of function evaluation (pair-wise comparisons) at each iteration. In
our target problem, the number of samplings should be small because the
sampling size is proportional to the user’s effort. However, when the number
of samplingsN seeded by CMA-ES is few, the optimization without GPR tends
to be trapped by a bad local minima. As shown in Figure 5.14, our technique
addresses this problem and converges to a better solution with considerably
fewer iterations than in previous methods.

At a single iteration during optimization, we first sample N sets of β sam-
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Figure 5.14: Comparison of convergence curves between CMA-ES
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the number of samplings seeded by CMA-ES is fewer, the optimization with-
out GPR fails to bad local minima while our technique converges to better
solution with much fewer iterations.

plings β1, ..., βN using common CMA-ES procedure (we used N = 8). Let P
be a set of pairs of indices (1, 2), ..., (N − 1, N). For each (i, j) ∈ P, the system
generates two test signals S(βi), S(βj), presents the pair side by side to the
user, and requests the user to rate each to generate a relative score. After col-
lecting the user feedback for all pairs, the system stores N/2 pairs of different
βs and their relative scores. After computing the absolute value of the cost q
for each β samplings using these relative scores, we estimate the local land-
scape of the continuous cost function Q(β) from the discrete q. We represent
Q = (q1, ..., qN) as a set of indices of sampling points. Using this estimated
cost function, the system computes the gradients, and updates the covariance
matrix in CMA-ES with quasi-Newton. We detail this procedure in the next
subsection.

Estimating the Local Landscape of the Cost Function: The system re-
quests that the user provides feedback regarding the two test signals that
correspond to each β pair. The system then stores relative scores for the
β pairs P. Given these relative scores, we compute the absolute value of the
sampling cost q for each sampling β. Our formulation is derived from Koyama
et al. [73], which estimates the consistent goodness field of high dimensional
parameters through unreliable crowd sourced rating tasks. Their approach
solves a minimization problem with two constraints:

arg min
q

(Erelative(q) + ωEcontinuous(q)) , (5.8)

where ω > 0 balances the two constraints (we set 5.0). Erelative(q) is the relative
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ALGORITHM 1: Hybrid CMA-ES assisted by Local GPR
1: Until convergence
2: Generate β samplings using Eq.(5.14)

and make P test pairs P.
3: Gathering the user feedbacks for each pair.
4: Computes absolute cost q for each β samplings.
5: Estimating the cost function of each sampling using GPR
6: Sort the samplings by the order of the cost

to form the new parent population in CMA-ES
7: The weighted mean y(g)w is computed

from the new parent population .
8: Quasi-Newton updates of y(g)w

using the gradients estimated by GPR.
9: Update the covariance matrix C(g) and global step size

in CMA-ES using Chen et al. [17],
respectively.

10: end

score-based constraint and is represented as

Erelative(q) =
∑

(i,j)∈P

||qi − qj + di,j||2, (5.9)

where di,j denotes the offset determined by the rating between i-th and j-th
samples.

di,j =



1 (relative score = 1)

0.5 (relative score = 2)

0 (relative score = 3)

−0.5 (relative score = 4)

−1 (relative score = 5).

(5.10)

Note that the sign of di,j is opposite to Koyama et al., because our optimization
is a minimization problem. In addition, we enforce the continuity of the cost
function by Econtinuous(q):

Econtinuous(q) =
∑
i∈Q

||qi −
∑
i ̸=j

(1− |βi − βj|∑
i ̸=k |βi − βk|

)qj||2. (5.11)

In this equation, we constrain the absolute costs of two sampling β to become
closer when the distance of the two β diminishes. This minimization problem
Eq.(5.8) can be solved as a linear least square problem.

Finally, we estimate the local landscape of the cost function Q(β) of the
β samplings using multidimensional GPR. We include discrete q samplings
obtained by Eq.(5.8) into GPR. This approximate function can be used to
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estimate the gradients, which are required by the quasi-Newton method as
described in the following paragraph. Note that although GPR is expensive
with high dimensions, it is not a serious problem in our case because the
dimension of a design parameter would not increase to such a high dimension.

Optimization: We employ a hybrid optimization scheme [17] of an
evolutional strategy to minimize Q(β) with respect to β. Note that we used
CMA-ES [40] and a gradient descent approach (quasi-Newton method.) This
hybrid approach first updates the design parameter using gradient informa-
tion to search for the local optima and to escape from bad local optima. The
evolutional strategy aspect generates the offspring (sampling) using two char-
acteristic variation operators, and additive Gaussian mutation alternately:

qg = QuasiNewtonUpdate(zg), (5.12)
z(g+1) = q(g) + ρ(g)B(g)D(g)y(g), (5.13)

B(g)D(g)y(g) ∼ N (0,C(g)), (5.14)

where z(g), g and ρ(g) are the design parameters, iteration step and a global step
size respectively. y(g) ∼ N(0, I) are independent realizations of a normally
distributed random vector with zero mean and covariance matrix equal to the
identity matrix I , and C(g) denotes the covariance matrix which is computed
using q(g) and z(g) (please see [17] for details).

For our initial guess, we first randomly generate the offsprings y(g) within a
range [0, 10] by means of Gaussian distribution, and then enforce a constraint∑
y(g) = 1 by dividing all the offsprings by

∑
y(g). This constraint can be

considered as a portion of the user feedback function, and we can optimize
CMA-ES with the common range [0,10]. In addition, we assume β has a
sparsity because most of optimized HRTF can be represented by a combination
of a few HRTFs included in dataset. Thus, the optimizer randomly drop the
elements under the average to zero in β offsprings of CMA-ES (we dropped
them to 30% probability). We found this constraint reduces training error.

5.7 Validation

5.7.1 Implementation
We implemented our neural network algorithm using C++ (with AVX2 opera-
tions) and CUDA from scratch. Our CPU had an Intel Core i7 6900K 3.2 GHz,
RAM 128 GB. Our GPU was an NVIDIA Geforce GTX1080x3. The training
consumed approximately 8 hours. The GUI application for calibration ran on
a web browser. This web application communicates with a GPU server (same
machine used for the training) in the background. The calibration algorithm
was written in Javascript. The front end GUI application sends βs to the GPU
server, and the GPU server generates HRTFs. For our user study, we used the
AKG K240 headphones.
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Figure 5.15: The result of cross validation. Top: convergence curve of each
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Figure 5.16: Synthetic data generation. We conducted 3d acoustic simulation.
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5.7.2 Quantitative Validation
Cross Validation: Confirming the assumption that the individuality of a user
can be represented accurately by blending some individualities of other sub-
jects (dataset) is crucial. To confirm this, we applied a cross-validation test to
the dataset. After training our neural network with the data of 44/45 subjects,
we optimized the personalization weight β to approximate the HRTF data of
the remaining subject. In this experiment, we optimized β using a hybrid
CMA-ES. For the cost function to minimize, we used a squared mean error of
power spectrums and phases between data outputted from the system and the
target (the rest subject’s data). We conducted this cross validation for all sub-
jects in the CIPIC dataset (45 times). Figure 5.15 (top) shows the convergence
curves of several optimizations, and Figure 5.15 (middle) shows a compari-
son of the prediction error between PCA (32 axis) and our algorithm on the
horizontal plane for all the subject. In addition, Figure 5.15 (bottom) shows
power spectrums of a subject at two directions between optimized and target
HRTFs. These figures show that all optimizations converge to a similar level
of error, and our system can approximate the HRTF of a new user by blending
the individualities of the trained dataset. Note that we computed PCA using
HRTF at all the directions in this experiment. Naturally, PCA computed for
each direction would provide much higher score than this result. However, it
requires more than ten thousands of PCA vectors for representing HRTF at all
the direction, and it is impractical for our target problem.

Validation with Synthetic Data: We validated the ability of our algorithm
to generate appropriate HRTFs by using synthetic data. For synthetic data
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generation, we simulated an open-space 3D acoustic field around an elliptically
shaped obstacle using the finite difference time domain (FDTD) method with
a perfectly matched layer [94, 95, 141]. FDTD is an established method used
to simulate an impulse response. We set up a three-meter cubic domain with
128×128×128 uniform grid as the simulation field. The simulations were
conducted using four shapes as obstacles. Each shape was an oval sphere and
had different radii (shape 1: x. 0.2m, y. 0.2m z. 0.2m, shape 2: x. 0.7m, y.
0.2m z. 0.2m, shape 3: x. 0.2m, y. 0.7m z. 0.2m, shape 4: x. 0.2m, y. 0.2m z.
0.7m). We recorded the sound pressure at two opposite sides of each obstacle,
modeled on the ears of humans (Figure 5.16). A sound source was spherically
rotated around the obstacle from a position of one meter from the center of
the obstacle, and generated an impulse response. We recorded the first 256
samples of sound pressure from the moment each impulse was started. These
simulated sounds became virtual HRTFs, and we used them for training data
in our algorithm.

We evaluate our method by predicting virtual HRTFs around a new shape
obstacle that is not included in the training data. We set the new shape
as the intermediate shape between shape 1 and 2 (x. 0.45m, y. 0.2m z.
0.2m). Figure 5.16 shows a comparison of the errors from the simulated HRTF
between our neural network and simple linear interpolation of simulation 1
and 2 on the horizontal plane. To generate this HRTF with our system, we set
β=(0.5, 0.5, 0, 0). With all directions, our algorithm had fewer errors than did
linear interpolation, which means that our algorithm can generate appropriate
HRTFs. Figure 5.17: bottom shows a comparison of the predicted results of
power spectrum at two directions when using both our method and linear
interpolation. Apparently, our neural network can estimate specific peaks and
dips than can linear interpolation.

5.7.3 User Study
We employed 20 participants (male:female = 13:7, age: 22∼62) and opti-

mized HRTFs for them using our system. The experiment consisted of three
steps. In the first step, we investigated the best-fitted CIPIC HRTF for each
participant. Here, we conducted a progressive comparison [122] to estimate
the best-fitted HRTF. Therefore, a participant compared 44 pairs of HRTFs
because 45 CIPIC HRTFs exist. We showed each participant 44 pairs of test
sounds convolved by two CIPIC HRTFs using the same GUI in our system
(FIgure 5.4); the participant indicated the best among them. This task con-
sumed 15∼20 min. The best CIPIC HRTFs were used in the third step as
baselines to evaluate our optimized HRTF.

We next requested that the participants calibrate their HRTFs using our
system. We ordered each participant to answer at least 100 pairwise compar-
isons. We did not decide the maximum times of comparisons and when a

81



P-value < 0.05 

0

23

45

68

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

* *
*

*

* *
* *

* *
* * * *

*

*
*

*

*

ID:

Number

CIPIC HRTF

Ours

ID Gender Age CIPIC : Ours P-value

1 M 23 36:64 0.00277

2 M 25 31:69 0.00010

3 M 25 43:57 0.07473

4 M 29 24:76 2.6047E-07

5 M 29 29:61 0.00046

6 M 31 18:82 3.8193E-10

7 M 32 20:80 3.9259E-09

8 M 35 25:75 6.7843E-07

9 M 41 22:78 3.4462E-08

10 M 43 35:65 0.00153

11 M 47 31:69 0.00010

12 M 55 40:60 0.02187

13 M 62 37:63 0.00486

14 F 24 41:59 0.03397

15 F 25 39:61 0.01367

16 F 27 21:79 1.1857E-08

17 F 32 35:65 0.00153

18 F 32 23:77 9.649E-08

19 F 39 39:61 0.01367

20 F 45 42:58 0.05114

Figure 5.18: The result of user study. The third column shows how many
numbers of options are selected as better HRTF for each participant between
best fitted CIPIC HRTF and optimized HRTF by our system.

participant indicated that he or she was satisfied, we stopped the calibration.
We measured calibration time and the number of mouse clicks (number of
pairwise comparisons) for each participant. The participants used the UI de-
scribed in §5.3. The calibration consumed 20∼35 minutes for each participant.
The number of pairwise comparison was 109∼202 times. This calibration time
was much shorter than the actual measurement for obtaining fitted HRTFs.

After each calibration, we conducted a blind listening test to compare the
HRTFs obtained using our method and the best fitted CIPIC HRTFs. In this
step, we showed each participant 100 pairs of test sounds. One of the test
sounds in each pair was convolved by an optimized HRTF and the other was
convolved by the best CIPIC HRTF for the participant. The test sound to
convolve was randomly selected from 10 prepared sounds (e.g., short music,
helicopter, and speech) and played 100 times. We requested that each par-
ticipant use the same GUI as during the calibration to select one test sound
from each pair that showed better spatialization . We requested that each
participant select only either 1 or 5 from among the option buttons. The order
(A or B) in which test sounds were played using optimized HRTF and best
CIPIC HRTF for each presented pair was random. We did not inform the
participants whether the selection was the optimized HRTF or the best CIPIC
HRTF. Figure 5.18 shows the number of times the better HRTF was selected by
each participant. These results show that the optimized HRTFs were signifi-
cantly better for almost all participants (p-value<0.05 by Chi-squared test for
18/20 subjects) than were the best CIPIC HRTFs, indicating that our system
successfully optimizes HRTFs for individual users.
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5.8 Limitations and Future Work
This study presented a fully perceptual-based HRTF optimizer for individual
users using a machine learning technique. However, several limitations are
remained for future work to overcome.

First, it is not clear how well the dataset we used spans the space of HRTFs.
Investigating the variance of HRTFs is an important future work. Second,
evaluating the absolute quality of final results after calibration is difficult. To
analyze this, more user studies (including the evaluation of azimuth error, el-
evation error, front-back reversal rate, and externalization percentage) should
be conducted in future work. Third, although our approach achieves much
faster optimization of HRTFs compared to existing methods, approximately
30 minutes of calibration time is still long. In our user study, we found almost
all the optimized individualization weight vectors became very sparse. This
means a few elements in the vector are large and the other elements are close
to zero. This observation implies that we can decrease the calibration time by
reducing the dimensions in the individualization weights that are approach-
ing to zero during the calibration, or using sparse coding techniques for the
individualization weights in future work. Finally, our approach for training
the individualities would not scale well when the number of subjects in the
dataset is much larger. A possible solution is clustering the subjects before-
hand (using some features of HRTF like principal component vectors), and
reducing the number of “domain” DoFs.

Our adaptive layer could be used in a wide range of other applications
(e.g., from mesh morphing to animation generation). However, the following
problem remains: training time increases in proportion to different categories
of individuality, as the number of training parameters (tensors at each layer)
increase. To address this, clustering and reducing the DoFs of the extracted
individualities in each adaptive layer should be considered. Recent studies
using a Gram matrix at each layer in a DNN for image styling [34] is expected
to be useful in solving this problem.
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Chapter 6

Conclusion

In this thesis, we have addressed the problems that interfere with the im-
proving the interactivity of computational sound by proposing several user
interfaces using precomputation. This chapter contains a brief summary and
discussions of the work, together with some possibilities for future research.

6.1 Summary
In computational sound, traditional approach uses fixed set of sound data that

is prepared beforehand, and simply plays these sounds at runtime. However,
such limited interactions reduce the virtual experience of digital computer
entertainment. Unfortunately, although various methods have been proposed
to address this problem, it is difficult to use them in actual scene because
of several reasons. For example, sound rendering techniques using physical
simulation achieve rich interactions with the user without preparing many
sound clips beforehand. However, it is difficult to design the sound’s tim-
bre by manipulating unintuitive physical parameters directly. For generating
rich sounds, various synthesizers such as singing voice synthesizer were de-
veloped. Although these synthesizers can feedback to the user with various
changing sound’s texture, the user has a difficulty to control their enormous
parameters using standard input devices. To render appropriate 3D spatial
sounds that response the user’s movement, the researches for HRTF have a
long history. However, because the measurement cost for HRTF is too expen-
sive, it is difficult to use these techniques for auditory users.

We addressed these problems by reducing each computational cost or
user’s operation cost of computational sound techniques by three novel user
interfaces using precomputation.

First, for designing physically based sound, we developed an example
based method that does not require the user to consider unintuitive physical
parameters, and makes physically based sound designable. This used an in-
teractive material optimization that was accomplished by a dramatically fast
vibrational analysis using precomputed mesh simplification algorithm using
machine learning and hierarchical component mode synthesis. Second, for
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making a singing voice synthesizer controllable, we presented a method to
estimate latent lyrics as higher DoF parameters from the input of lower DoF
control device using machine learning of lyrics dataset at precomputation
phase. Finally, in the calibration of 3d spatial audio, we proposed a machine
learning model that allows adaptation of the system to a specific user using
individual and non-individual factors of dataset which are extracted at pre-
computation. This method makes existing 3D audio spatialization techniques
usable for auditory users. Thus, in this thesis, we introduced three algorithms
to make interactive computational sound techniques usable in practical scene.

• Example Based Design Interface by Precomputation.

• Controlling high DoFs parameters with low DoFs input device by pre-
computation.

• Extraction and reduction of the essential factors from a dataset by pre-
computation.

These algorithms were designed to improve the interactivity of computa-
tional sound applications at runtime with precomputation. We demonstrated
the effectiveness of these approaches by implementing various systems.

6.1.1 Example Based Design Interface by Precomputation
We demonstrated an example based approach to design physically based
sound of an object. Our algorithm inversely optimizes internal material dis-
tribution of the 3D model from assigned sounds by the user. A difficulty
for achieving this was that the computational cost of vibrational analysis was
expensive because our material optimization requires it iteratively. If an op-
timization takes a long time, the trial and error design procedure of the user
becomes difficult. To address this, we developed an acceleration technique
for a vibrational analysis by precomputation. Our technique consists of data-
driven finite element coarsening of the mesh and hierarchical component mode
synthesis with efficient error correction. Our data-driven online coarsening
extended Chen et al.’s method [15], and reduced the mesh size at runtime
using machine learning technique at precomputation phase. It can handle a
large range of continuous material settings by reducing the material parameter
space, and can be evaluated with a constant cost for a large amount of datasets
using regression forests. Additionally, our highly parallelized hierarchical
component mode synthesis using precomputed mesh segmentation extended
conventional methods [134] to efficiently compute approximate solutions of
modal analysis, and our error correction algorithm efficiently improved its
accuracy. Using our method, our example based design framework runs at
interactive rate, and this provides practical design workflow for the user.
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6.1.2 Controlling High DoFs Parameters with Low DoFs Input
Device by Precomputation

We explored an algorithm for controlling enormous parameters of a singing
voice synthesizer by standard input device (e.g., piano keyboard). The core of
our interest for this target was how the low DoFs (a few keys) of such input
device can be mapped to high DoFs parameters (lyrics and melodies) by reduc-
ing the user’s operation cost. To address this, we trained a machine learning
model by pre- defined lyric dataset at precomputation phase. At runtime,
we assigned vowels onto a piano keyboard, and identified the most plausi-
ble character sequence in the predefined lyrics by finding the corresponding
vowel sequence using a probabilistic alignment technique. This allows real-
time control of both high DoFs lyrics and melodies of a song with a low DoFs
keyboard. Our system does not require the user to input the vowel sequences
strictly in the order of the original lyrics, because the system estimates the
plausible lyrics using a probabilistic model. This allows the user to jump to
arbitrary positions in the lyrics including backtracking. Additionally, our sys-
tem allows the user to make mistakes, freeing the player from paying excessive
attention to vowel input. Our method was not limited for the parameter of
a singing voice synthesizer, and can be used for controlling various kinds of
high DoFs parameters.

6.1.3 Extracting The Essential Factors from A Dataset by Pre-
computation for Runtime Calibration

We introduced a method to calibrate 3D audio spatialization for a specific
user as a first step of fully perceptual calibration approach. The difficulty for
achieving this was that HRTF for 3D audio spatialization has a large parameter
space, and can not be explored directly. To address this, we demonstrated
an algorithm to extract essential factors (individual factors) from a dataset
and reduce its dimensionality at precomputation phase. Using this trained
model, we calibrated HRTF for a new user by blending the extracted factors
in nonlinear space at runtime. This had an advantage to efficiently explore a
large design space with reduced parameters that reduces the user’s calibration
cost. We evaluated our algorithm by several quantitative validations and a
user study. We demonstrated that the calibrated HRTFs obtained using our
method outperformed best HRTFs in the data set in a user study with 20 users.
Such two steps machine learning technique, automatic feature extraction by
precomputation and optimizing it at runtime, could be widely used for other
domain problems.
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6.2 Future Directions
In this section, we discuss future research for improving the interactivity of
other domain problems by precomputation that was shown to be necessary in
this study.

6.2.1 Example Based Design Interface
Our example based interface for physically based sound design inversely opti-
mizes physical parameters from the intended result, which provides intuitive
design workflow for the user. There is a significant advantage to obtain the cor-
responding input parameters from an intended example. Similarly, there are
many applications that have a benefit by employing an example based interface
(e.g., animation design for deformable objects, image texture design). How-
ever the computational cost for the inverse problem solving which is required
for an example based method is usually much expensive than the forward
computation. In such situations, using precomputation similar to our method
for accelerating the computation could be useful. Also in sound applications,
simulation method of sound radiation from a vibrating object would be an
interesting target. Widely used simulation method uses boundary element
method (BEM) for precomputation [57], which is expensive to execute at an
interactive rate. This limits the object’s shape and vibrational properties to be
static. It might be addressed by accelerating this BEM with similar approach
to our method. For example, we could train a machine learning model by
object’s shape and material as input and the radiation specification as output.

6.2.2 Context-Aware Control
Our method for realtime control, that learns possible contexts at precom-
putation phase and achieves the user’s context aware control at runtime, is
essentially equivalent to the prediction of the user’s next movement according
to the inputs until current time. Recent several studies using recurrent neural
networks including long-short term memory (LSTM) have similar motivations
[35]. For example, by predicting the next movement of hand writing on a touch
panel of the user, the response would be quickly and the user experience might
be increased. Our method also could be applied similar target. There are two
advantages of our method compared with their methods. First, our method
have faster interaction responses. Second, our method requires quite fewer
training data. Thus, in the problem domains such as music performance and
sport in which our advantages are effective, our method could be useful.

87



6.2.3 Calibrating High Dimensional Design Parameters for A
Black Box Function

Our two steps algorithm, that extracts the essential factors of a dataset at pre-
computation phase and use them for runtime optimization, could be used
for many other domain problems that treat black box systems including hu-
man perceptions and tastes (e.g., image enhancement, flavor adjustment for
a customer, and sound equalizing by hall concert public address operator).
Although our method described in this thesis extracted the individualities by
subject, we can alternatively extract the factors by an arbitrary group. For ex-
ample, to develop a new good synthetic seasoning for a specific user, we could
gather a dataset of the relationships between rating of test seasonings and each
subjects’s favorite food by crowd sourcing, and extract the individualities by
favorite food at precomputation phase. At runtime, we could optimize the
blending weights for generating a new seasoning for a new user. An interest-
ing issue in this problem is that although the extracted factors are based on
favorite foods of gathered subjects, the new user does not need to care about
them and only tests the generated seasoning from the system. Thus, we could
hide the latent specification used for gathering dataset, and focus the target
user on only the target to design.

An another future direction is to extend the format of individual factors.
For example, although we used a vector for representing the individuality in
this thesis, extending the vector to a tensor alternatively is an interesting issue.
By using a tensor, it has a possibility to extract the individuality determined by
combination of multiple properties. For example, we might extract the specific
factor of peoples who like pizza and coke. However, the computational cost
for training would be exponentially increased according to the rank of the
tensor. Low rank decomposition of the tensor would address this problem,
but it remains as future work.
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Appendix A

Modal Sound Synthesis

Modal sound synthesis is based on the traditional linear modal analysis
techniques [1]. Modal analysis builds a reduced space for the elastic motion
equation using of the solution of the generalized eigenvalue problem of the
stiffness and mass matrices

KU = ΛMU (6.1)

whereΛ is a diagonal matrix, containing the eigenvalues (λ1, ...λr), andU is
a matrix in which each column is a eigenvector (u1, ...ur) corresponding to the
eigenvalue of Eq. (6.1). We can decouple the system by retaining r (r << n)

number of the eigen-pairs that have larger energies into the form

q̈ +C q̇ +Λq = UTfext (6.2)

where q is the generalized displacements, and u = Uq. The solution of
Eq. (6.2) are a bank of modes that are attenuated sinusoids that has various
frequencies and amplitudes. The i-th mode is represented as

qi = aie
−ditsin(2πfit+ θi) (6.3)

fi =

√
λi

2π
(6.4)

where t is the time, fi is the frequency of the mode, di is the damping
coefficient, ai is the excited amplitude, and θi is the initial phase. In general,
θi is ignored and then, i-th mode parameter is represented as ϕi = (fi, di, ai).
As the result, a collection of mode parameters (ϕ1, ..., ϕr) determines the vi-
bration specification of the structure, and modal sound synthesis uses it as the
sounding wave.
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Appendix B

Gradient Computation for Vibrational Optimization

For the gradient computation in our design problem, we need the derivative
of each mode frequency and amplitude with respect to the reduced design
parameter z. The mode frequencies and amplitudes are functions of the
eigenpairs, and the derivatives of k-th eigenvalue λk and eigenvector uk with
respect to z is represented as

∂λk
∂z

= uTk

(
∂K

∂z

)
uk

∂uk
∂z

= −(K − λkM)+
(
∂K

∂z

)
uk, (6.5)

where superscript+ denotes the pseudo inverse (Moore-Penrose inverse). We
approximate this pseudo inverse using the result of the already obtained
generalized eigenproblem by (K−λkM )+ ≒ U(Λ−λkM )+UT . For the details
of derivation of the derivative of eigenpair, please read [77]. In addition, the
derivative of the stiffness matrix K with respect to z is represented as

∂K

∂z
=

M∑
e=1

∂K

∂Ye

∂Ye
∂z

=
M∑
e=1

∂K

∂Ye
Φe, (6.6)

where all but 24 entries (3 dimensions × 8 nodes) in ∂K
∂z

are zero, and K is a
linear function for Ye, then the computational costs are cheap.
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Appendix C

Hybrid Optimization Scheme of Evolutional Strat-
egy and Gradient Descent Approach

We employ a hybrid optimization scheme [17] of evolutional strategy (we
used CMA-ES[40]) and gradient descent approach (we used Quasi-Newton
method) for solve our design problem.This hybrid approach first updates
the design parameter using the gradient informations for searching the local
optima, and to escape from bad local optima, the evolutional strategy part
generates the offspring by two characteristic variation operators, and additive
Gaussian mutation alternatively.

qg = QuasiNewtonUpdate(zg), (6.7)
z(g+1) = q(g) + ρ(g)B(g)D(g)y(g), (6.8)

B(g)D(g)y(g) ∼ N(0, C(g)), (6.9)

where z(g), g and ρ(g) are the design parameters, iteration step and a global step
size respectively. y(g) ∼ N(0, I) are independent realizations of a normally
distributed random vector with zero mean and covariance matrix equal to the
identity matrix I , and C(g) denotes the covariance matrix which is computed
using q(g) and z(g) (please read [17] for the details).
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Appendix D

Variational AutoEncoder

Our network architecture is based on variational AutoEncoder [71, 112]
Variational AutoEncoder is a generative model of a deep neural network. We
used conditional variational AutoEncoder [69, 121]. It consists of a decoder
pθ(x, y|z) and the variational posterior encoder qϕ(z|x, y), where x, y, and zare
input, description label, and latent variable respectively, and produces the
parameters of each distribution after a series of non-linear transformations.
Both the model (θ) and variational (ϕ) parameters will be jointly optimized with
stochastic gradient variational Bayes (SGVB) algorithm according to a lower
bound on the log-likelihood. This parametrization allows us to capture most of
the salient information of x and y in the embedding z. By choosing a Gaussian
posterior qϕ(z|x, y) and standard isotropic Gaussian prior p(z) ∼ N(0, I) we
can obtain the following lower bound.

log pθ(y|x) = −KL(qϕ(z|x)||pθ(z|x))
+Eqϕ(z|x) [−log qϕ(z|x) + log pθ(x, z)]

≥ −KL(qϕ(z|x, y)||pθ(z))
+Eqϕ(z|x, y) [log pθ(y|x, z)] (6.10)

and the empirical lower bound is written as

log pθ(y|x) ≥ −KL(qϕ(z|x, y)||pθ(z))
+ 1

L

∑L
l=1 log pθ(y|x, z(l)), (6.11)

where KL() denotes Kullback-Leibler divergence. Finally, the total loss to
minimize can be formulated as

L = |x′ − x|2

− 1

2
Mean

(∑
(1 + zvar − z2mean − ezvar)

)
, (6.12)

where Mean() represents the mean average. Note that we use only the HRTF
data at the sample direction (the center position in a patch although we sam-
pled 5×5 directions for input) for original input x becomes a 512 dimensions
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vector.
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Appendix E

DNN Architecture for HRTF

Figure 6.1, Figure 6.2 and Figure 6.3 show each block of our neural network.
In these figures, red arrows denotes adaptive layers described in §5.6, and blue
arrows denotes common linear layer. We divide the HRTF patch x by each
channel and input them separately as the power spectrum channels of LR xfl
and xfr and the time signals of LR xpl and xpr. Similar to the conventional
variational AutoEncoder, the architecture has an encoder (Figure 6.2) and a
decoder (Figure 6.3). The encoder extracts latent variables from the input,
and the decoder outputs reconstructed HRTFs in the format described in the
previous section from the sampled latent variables.

Figure 6.4 shows the equations, whereELU()denotes an exponential linear
unit [20]. Conv() is the 3D HRTF patch convolution andAdapt() represents our
adaptive layer (which we describe in a later section). The middle of the network
has feed forward connections that represent residual networks. Merge() joints
the four channels of vectors into a single vector. At the encoder, the system
first decomposes the HRTF patch into four channels (left power spectrum xfl,
right power spectrum xfr, left time signal xpl, and right time signal xpr), and
inputs each channel into independent convolutional layers. After applying the
convolutions, the system merges the four channels into a single vector as x0
and transforms it into x1 by applying an adaptive layer in order to reduce the
number of dimensions. This thus becomes an input vector of the variational
AutoEncoder. Using these two vectors, which represent a sample direction and
subject label, respectively, as well as the input vector after the convolutions,
the encoder of our variational AutoEncoder generates the mean zmean and
variation zvar vectors of a Gaussian distribution (latent variables in Figure 6.3).
The latent variables can be generated from this Gaussian distribution zp ∼
N(zmean,

1
2
zvar). At the decoder, the system uses the two vectors y and s that

match the encoder and latent variables zp, and reconstructs the center HRTFs
of the input HRTF patches of the four channels (L-ch power spectrum, R-ch
power spectrum, L-ch time signal, and R-ch time signal) through residual
adaptive network layers.

For optimization, we use the mini-batch Adam algorithm [70] with
mini-batch size 16. We set the numbers of the layerN as 4. In our experiment,
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Figure 6.1: 3D convolutions block architecture.

the number of the layers is not so sensitive to the result. In addition, we
insert the batch normalization layers [55] before all nonlinear units (ELU func-
tion). We randomly restart the optimizers at each layer independently during
training. We found that this layer-dependent stochastic restart accelerates the
convergence of the network.
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Figure 6.2: The encoder block extracts latent variables from input.
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Figure 6.3: The decoder block generates reconstructed HRTF from latent vari-
ables.
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Figure 6.4: The equations of our DNN.
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