
Fully Perceptual-Based 3D Spatial Sound Individualization with an
Adaptive Variational AutoEncoder

KAZUHIKO YAMAMOTO, The University of Tokyo
TAKEO IGARASHI, The University of Tokyo

Individuality 45

The system presents a pair of test signals (A/B)

The user answers which signal is better.

The system optimizes

HRTF Data Set
(45 subjects)

Adaptive Variatonal AutoEncoder

Output: New HRTF fitted for the user

Non-individual factor+

Separate

Training of HRTF Generator

Personalization Weight

Calibration by the user

5 scale rating

Input: Perceptual feedback from the user

Blending

Individual Factors

Individuality 2

Individuality 1

HRTF Data set

The optimized HRTF can be used in an arbitrary platform.

HRTF Data Set

Fig. 1. The concept of the system. The user can calibrate their own Human Related Transfer Function (HRTF) for 3d audio spatialization. The system
presents a pair of test signals, and the user feedbacks which one is perceptually better. Using this feedback task iteratively, our system optimizes a personal-
ization weight for the user to obtain an individualized HRTF. The personalization weight blends individual factors of HRTF which are extracted from a public
HRTF data set during training. After calibration, our system outputs the individualized HRTF in an arbitrary required format for each rendering platform.

To realize 3D spatial sound rendering with a two-channel headphone, one
needs head-related transfer functions (HRTFs) tailored for a specific user.
However, measurement of HRTFs requires a tedious and expensive proce-
dure. To address this, we propose a fully perceptual-based HRTF fitting
method for individual users using machine learning techniques. The user
only needs to answer pairwise comparisons of test signals presented by the
system during calibration. This reduces the efforts necessary for the user to
obtain individualized HRTFs. Technically, we present a novel adaptive vari-
ational AutoEncoder with a convolutional neural network. In the training,
this AutoEncoder analyzes publicly available HRTFs dataset and identifies
factors that depend on the individuality of users in a nonlinear space. In
calibration, the AutoEncoder generates high-quality HRTFs fitted to a spe-
cific user by blending the factors. We validate the feasibilities of our method
through several quantitative experiments and a user study.

CCS Concepts: •Applied Computing → Sound andMusic Computing;

Additional KeyWords and Phrases: 3d spatial sound rendering, deep neural
network, optimization, sound design in a virtual environment

ACM Reference format:
Kazuhiko Yamamoto and Takeo Igarashi. 2017. Fully Perceptual-Based 3D
Spatial Sound Individualization with an Adaptive Variational AutoEncoder.
ACM Trans. Graph. 36, 6, Article 212 (November 2017), 13 pages.
DOI: 10.1145/3130800.3130838

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2017 ACM. 0730-0301/2017/11-ART212 $15.00
DOI: 10.1145/3130800.3130838

1 INTRODUCTION
The human auditory system perceives the directions of incoming
sounds using both ears. According to the direction from which a
sound arrives to the head, an arrival time difference to the left and
right ears can be determined. In addition, the sound is intricately
diffracted by the shape of the person’s head and ears. This diffrac-
tion effect depends on the frequency and incoming direction of the
sound. Therefore, the spectrums of the sounds that arrive at each
ear are modified. We can recognize the localization of the sound by
these sound modifications. These two-channel transforms of the
spectrums can be represented as finite impulse response filters and
are called human-related transfer functions (HRTFs).

Three-dimensional (3D) spatialization of sounds in virtual envi-
ronments (e.g., VR and games) requires HRTFs to reproduce in-
coming sounds from various directions using a two-channel head-
phone. However, HRTFs are highly specific to individuals because
they depend considerably on the shape of the user’s ears and head.
We call the proper HRTFs for individual users as an individualized
HRTFs. We know that inappropriate HRTFs can lead to improper
localization of the sound source accompanied by an unexpected
equalization of the timbre. Such improper localization especially
includes front-back and up-down confusions [Middlebrooks 1999;
Moller. et al. 1996; Wenzel et al. 1993]. Because of this, we must es-
sentially measure the individualized HRTF for each user. The mea-
surement procedure requires special equipment, including an ane-
choic chamber, as well as time-consuming and tedious efforts of
the user. Thus, using individualized HRTFs for each end user has
been impractical. This may explain why 3D sound rendering has
not been as popular as visual rendering.

To address these problems, we propose a novel fully perceptual-
based optimization of HRTFs for individual users (Figure 1). Our

ACM Transactions on Graphics, Vol. 36, No. 6, Article 212. Publication date: November 2017.

212:2 • Kazuhiko Yamamoto, Takeo Igarashi

system requires neither special equipment nor tedious measure-
ment procedures. The user only needs to provide several feedback
rating pairwise comparisons of test signals provided by the system
based on his or her individual perceptions during calibration. This
reduces the user’s efforts at obtaining individual HRTFs. Our algo-
rithmuses a novel adaptive variational AutoEncoder [Rezende et al.
2014][Kingma and Welling 2014] trained with a publicly available
HRTFs data set. During training, it decomposes HRTFs in the data
set into factors based on individual users and the rest. During cal-
ibration, our adaptive variational AutoEncoder generates individ-
ualized HRTFs for a new user by blending several individualities
with personalization weight in nonlinear space. An advantage of
this algorithm is that it does not require optimizations for all the
spherical directions around the head because the personalization
weight is shared within all the directions. Instead, it covers all di-
rections by running optimizations for only a few candidate direc-
tions, which has been not addressed in previous studies.
We evaluate our algorithm by several quantitative validations

and a user study. The cross validation shows that our algorithm has
an ability to generate a fitted HRTF for a new user. In the exper-
iment using synthetic data, our algorithm accurately predicts 3D
acoustic field around an obstacle which demonstrates the ability to
estimate a new HRTFs. Finally, we show that the individualized
HRTFs obtained using our method outperforms best HRTFs in the
data set in a user study with 20 users.

The contributions of this study are as follows.

(1) We propose a fully perceptual-based optimization method
to obtain individualized HRTFs for users, which reduces
user effort of HRTF measurement (Section 4).

(2) We present a novel adaptive variational AutoEncodermodel
that isolates factors based on individual users during train-
ing and synthesizes individualizedHRTFs by blending them
in a nonlinear space during calibration (Section 5).

(3) We present a hybrid CMA-ES, assisted by a local Gaussian
process regression, that accelerates sampling-based opti-
mization of a black box system through user feedback by
estimating gradient information (Section 6).

2 RELATED WORK

2.1 Measurement
The straightforward approach to obtaining individual HRTFs in-
volves the actual acoustic measurements in an anechoic chamber.
Loud speaker arrays are spherically arranged around the subject’s
head and two small microphones are inserted into both ears. The
subject sits with his or her head placed at the center of these spher-
ical speaker arrays and is instructed to remain still during the long
measurement periods. Specific test signals (such as sine sweep sig-
nals) is played one by one from the different loud speakers and
the signals at the microphones are recorded. By comparing these
recordings with those obtained from a microphone placed at the
center of the speaker arrays (excluding the subject), the individ-
ual HRTF can be computed. Many variants exist for conducting

1. Training (Optimize HRTF generator using given HRTF datasets)

2. Calibration (Optimize individualization weights using given user feedback)

Variational AutoEncoder (neural network)

HRTF encoder

given

Reconstruction of given HRTFs

Output

HRTF generator
(decoder)

Latent variables
HRTF generator

(decoder)
Latent variables

Fixed

HRTF generator
(decoder)

Latent variables
HRTF generator

(decoder)
Latent variables

HRTFDirection (vector)

Personalization
weights

HRTF

Direction (vector)

Personalization
weights

Direction (vector)

given

Personalization
weightsg
sonalizatonaliza

Output

HRTF

The user listens

New HRTFs

User feedback

Fig. 2. An algorithm overview. Our algorithm consists of two phases. At
the first phase, we train a neural network using a public HRTF data set.
At the calibration phase, the system shows test signals generated from the
HRTF generator, and the user provides feedbacks according to his/her per-
ceptual direction of the signal. Using this feedback information, the system
optimizes personalization weight which is used for the input of HRTF gen-
erator to make a new HRTF for the user.

these measurements. However, because such measurements usu-
ally require expensive equipment as well as tedious procedures, us-
ing these measurements with each end user is impractical and thus
prevents their widespread use. An alternative measurement ap-
proach is to use reciprocal method [Matsunaga and Hirahara 2010;
Zotkin et al. 2006] that much reduces the measurement time. This
approach swaps the loud speaker and the microphone positions. It
inserts a micro-speaker into the subject’s ear and places several mi-
crophones around the subject. To measure the HRTF, test signals
are played from the inserted speakers and captured by the micro-
phones. However, this has a limitation to capture only the HRTF
at a narrow middle range frequency because it highly depends on
the specification of such the small loud speaker.

2.2 Numerical Simulation
To avoid actual measurement in an anechoic chamber, many nu-
merical simulation techniques forHRTF have been proposed. These
techniques use the scanned 3D mesh of a human’s head and ears,
and solve an acoustic wave equation to simulate the sound prop-
agation around the head. Two major approaches for solving this
acoustic wave equation are the boundary element method (BEM)
[Gumerov et al. 2010; Jin et al. 2014; Kahana and Nelson 2007; Katz
2001] and the finite-difference time-domain (FDTD) method
[Mokhtari et al. 2008, 2010; Xiao and Liu 2003]. However, these
techniques have three critical limitations. First, the simulation usu-
ally consumes tens of hours or a few days when using an auditory
desktop computer. Second, the user must scan the 3D mesh data,
which requires special equipment and additional effort. Third, the
scanned mesh of the ears lack the details of the geometry that con-
siderably affects the high frequency domain in an HRTF. To address
the first problem, Alok et al. [2014] improved the computational
speed of the simulation using an adaptive rectangular decompo-
sition technique (ARD). They achieved a computation time of less
than 20 min for a broadband HRTF using auditory machine. How-
ever, it still requires the detailed mesh of head and ears which is
difficult to obtain.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 212. Publication date: November 2017.

Fully Perceptual-Based 3D Spatial Sound Individualization with an Adaptive Variational AutoEncoder • 212:3

To avoid the tedious 3D mesh scanning procedure, DeepEar-
Net [Kaneko et al. 2016] estimates the 3D geometry of a user’s ears
from RGB photographs using a deep convolutional neural network
and then numerically simulate the HRTF using BEM. This system
extracts the feature parameters of the ears of the user from the pho-
tographs of the ears captured by the user him- or herself from two
directions through manual annotations. However, sufficiently cap-
turing the details of the ears in order to estimate the high frequency
domain of the HRTF is difficult.

2.3 HRTF Optimization
To obtain fitted HRTF for a user, Zotkin et al. [2004] attempted
to select the best matching one from an existing data set. They
measured pinna parameters of the user and selected an HRTF of a
subject who has the closest pinna parameters. However, this has
no guarantee that the picked one is the best HRTF for the user.
Several studies have been conducted to optimize an HRTF for an
individual user using machine learning techniques. Josef [2014]
asked users to adjust the principal component weights (PCW) of
the HRTF manually using a slider on a user interface (UI). This
was accomplished using listening tests. However, manipulating
the unintuitive PCW parameters directly was found to be difficult.
Yuancheng et al. [2013a] assumed the “blackbox” human auditory
system, which takes a sound cue as input and returns the percep-
tual direction as a Gaussian process regression model and fits the
HRTF for the “virtual” user model using AutoEncoder. Their results
imply that nonlinear dimensionality reduction better reconstructs
HRTFs than do linear space reduction methods such as principal
component analysis (PCA). However, the AutoEncoder they em-
ployed, which was trained with the consolidated data of multiple
subjects, may spoil the individualities of an HRTF. In addition, their
experiments were merely a virtual simulation under rather limited
conditions and had not been applied to actual problems.
A major approach to optimizing an HRTF for a new user us-

ing machine learning is to solve a regression problem that predicts
a low-dimensional reduced HRTF from the anthropometric infor-
mation of the user’s head and ears. Principal Component Anal-
ysis (PCA) [Iida et al. 2014] and independent component analysis
(ICA) [Huang and Zhuang 2009], which reduce the dimensional-
ity of HRTFs in linear space, have been widely used. Bilinski et
al. [2014] represented the sparse vector of a new subject’s anthro-
pometric features as a linear superposition of the anthropometric
features of a training subset. They then obtained the individual
HRTF by using those features as weights to interpolate the HRTF in
the training dataset. Various nonlinear regression techniques such
as neural networks [Hu et al. 2008] and support vector regression
(SVR) [Huang and Fang 2009;Wang and Chan 2013] have also been
proposed. However, these regressionmodels cannot adequately ex-
press the complex relationships between anthropometric features
and low-dimensional HRTFs.
Felipe et al. [2014] proposed a state-of-the-art approach to op-

timize horizontal plane HRTFs using manifold learning through a
nonlinear regressionmodel. This approach uses anthropometric in-
formation that is actually measured for each user by professional
authors. The dimensionality of the HRTF included in a data set is

Rating Radio Buttons

selected

Submit Button

Top view

HRTF BHRTF A

Side view

The Intended Direction
of The System

Fig. 3. The user interface pane for gathering the user feedbacks. It runs on
web browser. When the user push A (red) or B (blue) button, one of the
test signal pair is played. The 3D graphics shows the intended direction
of the system from the side and top views. The user rates the pair by 5
pt scale with radio buttons and submit it. Finally, the user exports his/her
individualized HRTF data by pressing the export button.

first reduced using IsoMap in a nonlinear space. Next, a regres-
sion problem is solved using a neural network. The neural net-
work then processes the anthropometric data of the user and out-
puts a corresponding reduced (low-dimensional) HRTF. Finally, the
system generates the individualized (high-dimensional) HRTF by
means of a linear superposition of the neighboring vectors of the
reduced HRTF in the IsoMap. However, in addition to the difficulty
of measuring the anthropometrics precisely for each user, these
anthropometric-based approaches mostly rely on low-dimensional
heuristically defined anatomical measures, which are not necessar-
ily sufficient to describe the complicated shape of the ears of hu-
mans.

3 ALGORITHM OVERVIEW
Our algorithm consists of two steps (Figure 2): 1) Training of an
HRTF generator, which involves learning the individual and non-
individual features from an HRTF dataset (§5). 2), Calibration of
the HRTF generator, which involves individualizing an HRTF gen-
erator for each specific user (§6). In the first step, we train our
HRTF generator using an HRTF data set (we used CIPIC data set
[Algazi et al. 2001]). The HRTF generator is a generative neural
network model that is based on an extension of a conditional vari-
ational AutoEncoder [Kingma and P 2014; Sohn et al. 2015]. We ex-
tend it by adding 3D convolutional layers (§5.5) designed for HRTF
input, as well as novel adaptive layers (§5.6) that separate the in-
dividuality and non-individuality factors of the users in a nonlin-
ear space. This neural network takes a set of HRTFs, a continuous
vector, and a one-hot vector as input. The continuous and one-hot
vectors represent a sampled incoming direction of a sound and sub-
ject label (which subject’s data are inputted), respectively. It then
reconstructs HRTFs by extracting the latent variables as output.
After the training of the generative model, our neural network can
generate a new HRTF for a given direction around a head using
the following three types of input: the latent variables, an intended
direction, and a vector defined as personalization weight. Person-
alization weight represents the amount of contributions from indi-
viduals in the dataset in blending.

In the second step (calibration), we optimize the personalization
weight to generate an individualized HRTF for the target user. This

ACM Transactions on Graphics, Vol. 36, No. 6, Article 212. Publication date: November 2017.

212:4 • Kazuhiko Yamamoto, Takeo Igarashi

step involves interaction with the user, as described in §4. The sys-
tem optimizes the personalization weight to minimize the differ-
ence between the intended spherical direction of the system and the
direction perceived by the user. After this calibration, our system
can output an arbitrary HRTF format. Most real-time rendering
platforms (e.g., game engines) store HRTF data at discrete direc-
tions internally and interpolate them at runtime. The system out-
puts HRTFs at the required directions for each platform and these
can be used by an arbitrary rendering scheme depending on each
platform.

4 USER INTERFACE
The user obtains individualized HRTFs by running a one-time cal-
ibration that roughly consumes 15∼25 min. The calibration appli-
cation runs on a web browser (Figure 3). The system first presents
a pair of test signals and its intended direction. The user then plays
the test sound by pressing an A/B selection button. Each of these
two test signals is generated from different HRTFs (personalization
weights), respectively, and has the same intended direction. We
randomly select an audio source from 10 predefined test sounds
(e.g., speech, helicopter, short music phrase) and then filter the au-
dio using the generated HRTFs. The intended direction continu-
ously moves spherically around a head and is shown as a moving
sphere from side and top views. The user listens to the test signals
and provides feedback by selecting one of the 5-scale options that
represents the sound that is perceptually closer to the intended di-
rection shown on the screen with “1” meaning that one of two test
signals is definitely better, and “5” meaning that the other test sig-
nal is definitely better. Thus, “3” means neutral. By iterating this
simple pairwise comparisons (approximately 150∼200 times), the
system automatically individualizes the HRTFs by optimizing the
personalization weight for the target user. The user can stop the
calibration at an arbitrary timing (usually when the user satisfied
or can not distinguish two test signals). This approach has two ad-
vantages. First, obtaining individual HRTFs for users is much easier
with this than previous approaches. Second, the effects caused by
the acoustic properties of the user’s headphones can be considered
by using the same headphones for calibration and runtime, some-
thing that was not addressed in previous studies.

5 TRAINING WITH PUBLIC HRTF DATA SET

5.1 Data Set

Direction: u

-

P1 P2

P3 P4

pitch

yaw

Fig. 4. The representation for an
incoming direction of a sound.

We used the publicly available
CIPIC data set [Algazi et al.
2001] which contains HRTFs
of both ears actually measured
in an anechoic chamber for 45
subjects at 25 azimuths and
50 elevations. In total, it in-
cludes 1250 sample directions
of HRTF per subject and ear.
Each set of data for a direction,
subject, and ear is recorded
as an impulse response of 200
wave samples with a 44.1kHz

! "! #!! #"! $!! $"! %!! %"! &!!
#

!'"

!

!'"

#

#'"

$

! "! #!! #"! $!! $"!
%

&

$

#

!

#

$

&

%

L channel R channel

L channel R channel

Frequency

Time

Angle

Amplitude

Ground Truth

Direct Phase Regression

Ours

Fig. 5. A comparison of phase (top) and time signal (bottom) reconstruc-
tion. Direct phase reconstruction approach (blue) outputs large error that
causes unnatural noise in time signal.

sampling rate audio file. Impulse signals are played by a loud
speaker array spherically arranged around the head. They are
recorded using two small microphones inserted into the ears of
each subject. Instead of using the CIPIC angle representation (az-
imuth and elevation), we redefine the spherical coordinate as yaw
and pitch (Figure 4). The yaw θ and pitch angle ψ are measured
in a head-centered interaural-polar coordinate system. The yaw is
the angle that varies from the back left −π to the back right π . The
pitch angle varies from the bottom −π/2 to the top π/2. We ar-
range all the sampling points on a unit sphere as 3D vertices and
construct a spheremeshwithDelaunay triangulation. This triangu-
lated unit sphere is used for obtaining HRTF data at an arbitrary di-
rection by means of bilinear interpolation. Note that CIPIC dataset
has a big hole at the bottom. Because of this, the bilinear inter-
polation could introduce some artifacts. To alleviate this, one can
use arbitrary HRTF interpolationmethods [Duraiswaini et al. 2004;
Luo et al. 2013b] alternatively.

5.2 Input Format
During training, our neural network take a sampled direction y
(vector), a subject label (one-hot vector) s , and a set of HRTFs x
from around the specified direction of the subject as input. It then
outputs the reconstructed x ′ using an adaptive variational AutoEn-
coder. We train this model to have x ′ be similar to x . We repre-
sent a direction as y ∈ R26, whose elements are the weights to
an overcomplete basis of 26 unit vectors evenly distributed in all
directions ∈ R3 (red points in Figure 4). For a given direction vec-
tor u ∈ R3, the system identifies surrounding four unit vectors
(P1, P2, P3, P4), and gives weights (w1,w2,w3,w4) to them so that
w1 = s · t ,w2 = (1− s) · t ,w3 = s · (1− t),w4 = (1− s) · (1− t) where
Yawu = s ·YawP1+(1−s)·YawP2 , Pitchu = t ·PitchP1+(1−t)·PitchP3 .
The weights of the other 22 unit vectors are set to zero. We do not
use a 3D vector to represent the direction because a neural network
tends to be insensitive to the fluctuation of continuous values on a
node while being more sensitive to the binary-like activations on
each node [Courbariaux and Bengio 2016] The subject label s ∈ RS
becomes a one-hot vector that represents the inputted subject data.
In our experiment, S became 45 dimensions because the CIPIC data

ACM Transactions on Graphics, Vol. 36, No. 6, Article 212. Publication date: November 2017.

Fully Perceptual-Based 3D Spatial Sound Individualization with an Adaptive Variational AutoEncoder • 212:5

set includes HRTFs of 45 subjects. If x is the p-th subject’s, the cor-
responding element of s became 1; otherwise, 0.
Our neural network treats HRTF in a spectral domain. The origi-

nal HRTFs in a time domain can be recovered from both the power
spectrum and phase information outputted from the system. For
the power spectrum, we compute 256 rectangular-windowed FFTs
of each HRTF impulse response and extract only the minimally re-
quired power spectrum (128 dimension vectors of LR channels).
However, for phase information, we do not use spectral data (an-
gles) directly because the reconstruction error of phase angles are
quite sensitive. Actually, previous methods have not solved the re-
gression problem of phase. Alternatively, we solve a rough regres-
sion problem of time domain signals, and estimate phase informa-
tion from them. We use the first 128 samples of the time signal of an
HRTF as input to our neural network. In summary, we reconstruct
time signals through a neural network, and indirectly estimating
only the phase angle (discarding the power spectrum information)
from them. Using both the estimated phase and power spectrum,
we reconstruct the final HRTFs. This indirect approach to estimat-
ing the phase reserves the rough shape of the impulse response,
which is difficult to accomplish through direct phase estimation.
Figure 5 shows the comparison of phase reconstruction between
our method and direct phase estimation. The direct phase regres-
sion approach does not reconstruct the phase at all, but rather de-
stroys the shape of the time signal. By contrast, our method suc-
cessfully simulates the original phase information, thus preserving
the time signal shape.
To construct the HRTF input data structure of x , we include

not only the impulse response of the HRTF at the exact sampled
direction y, but also its several surrounding neighboring impulse
responses (Figure 6). In total, we sample 25 directions with 5×5
rectangular grid shapes, in which the center becomes the HRTF
at the direction y. The stride of the grid is ±0.08π rotations for
both yaw and pitch on a unit sphere direction from the head. In
addition, we obtain the power spectrums and LR time domain im-
pulse responses at each direction using bilinear interpolation in
frequency domain on the unit sphere [Langendijk and Bronkhorst
2000; Wenzel and Foster 1993]. To reconstruct an interpolated time
signals, we use both interpolated power spectrums and phases. We
call this 5×5 grid that stores HRTF information as the Patch. This

y

5

5

The sample direction

frequency
(for power spectrum)

or

time
(for time signal)

The neighbor directions

Yaw

Pitch

Yaw

Pitch

Each pixel has 4 channels

(LR-ch power spectrums

and time signals)

Fig. 6. The input data structure of our neural network (We call HRTF
patch). This HRTF patch has voxel like data structure, which encodes spa-
tial correlations of HRTFs. Each voxel has four properties (LR channels of
power spectrums and time signals) like color channels of image.

Output space of DNN
(image like format)

continuous vector of

power spectrum / time signal

Frequency / Time

Continuous Amplitude

Quantized Amplitude

(256 steps)

μ-law compression

μ-law decode

quantized value

Normal Distributions

Fig. 7. The output data structure .

patch representation is expected to encode the correlations with
surrounding directions. Finally, this input data structure becomes
a 3D voxel patchwith 5× 5× 128 dimensions (128 power spectrums
or 128 sample time signals) and each voxel has four color channels
(power spectrums and time signals of LR channels) as shown in
Figure 6. This becomes the input x of our neural network.

5.3 Output Format
Our neural networkreconstructs the HRTF x ′ to minimize the dif-
ference between the input and output HRTF with an AutoEncoder
manner. However, solving a regression problem of a signal that
shows a large fluctuation (e.g., time domain audio signal and power
spectrum) using a generative neural network is difficult. This is be-
cause a neural network smoothes the output throughout the train-
ing data. Therefore, the trained result tends to be an “averaged sig-
nal,” which causes a fatal error. To address this, we use a quantized
format similar to WaveNet [van den Oord et al. 2016]. WaveNet
predicts time domain audio signals using an image-like quantized
format (width: time, height: amplitude), which successfully solves
a regression problem of large fluctuated signals. Similarly, we quan-
tize the power spectrums and time signals of HRTFs into 256 steps
using µ-law compression. As a result, the output format becomes
an image-like representation (Figure 7). Unlike in WaveNet, we do
not use one-hot vectors for the final layer nor the SoftMax func-
tion. The SoftMax function generalizes all the output of the neu-
ral network into [0, 1] probabilities. This is equivalent to solving
an unconstrained optimization problem which requires extensive
training data. However, the size of our setting’s training data is
considerably less than that ofWaveNet, which can lead to optimiza-
tion failure. Alternatively, we construct an array of normal distri-
butions on each quantized vector, in which mean values are equal
to each quantized value. In addition, we set all the variances to 5
(Figure 7) and minimize the mean squared error of these multiple
normal distributions. This addresses the aforementioned problem
because it is equivalent to constraining the value range of the so-
lution. To generate a final HRTF, we first compute each quantized
value by maximum likelihood estimation from the output and then
obtain the result by decoding the quantized values using inverse
µ-law compression.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 212. Publication date: November 2017.

212:6 • Kazuhiko Yamamoto, Takeo Igarashi

3D Convolutions

(§5.5)
Encoder

Latent Variables
z ~ N(qmean, qvar/2)

Generator (Decoder)Input (§5.2) Output (§5.3)

Conditional variational AutoEncoder

Fig. 8. Our neural network architecture. Our neural network is an exten-
sion of a conditional variational AutoEncoder, which reconstructs HRTF
from the inputted HRTF through the latent variables.

5.4 DNN Architecture
Figure 8 shows our neural network architecture which has three
blocks (please see Appendix B for the detail). Our neural network
is an extension of a conditional variational AutoEncoder (Appendix
A). Three extensions are used: 1) We introduce 3D convolutions for
the input, which are specifically designed for our HRTF patch. 2)
We propose an adaptive layer that decomposes the individual and
non-individual factors during the training. 3) We introduce resid-
ual networks to prevent gradient vanishment. This neural network
uses an HRTF patch x , a sample spherical direction y, and the sub-
ject label s as input, and reconstructs x ′ by extracting the latent
variables. We divide the HRTF patch x by each channel and input
them separately as the power spectrum channels of LR xf l and xf r
and the time signals of LR xpl and xpr . Similar to the conventional
variational AutoEncoder, the architecture has an encoder and a de-
coder. The encoder extracts latent variables zmean and zvar from
the input, and the decoder outputs reconstructed HRTFs in the for-
mat described in the previous section from the sampled latent vari-
ables z.

5.5 3D Convolutional Layer for HRTF Patch
As shown in Figure 8, we embed 3D convolutional layers for the
input of the variational AutoEncoder at the encoder. We expect
these convolutions to encode the correlations between the HRTF
at the sample direction and its surrounding neighboring directions
within anHRTF patch. A typical 3D convolutional layer [Tran et al.
2015] in a neural network shares the filter coefficients of the kernel
over the weight tensor. Instead of using this type of layer, we em-
ploy a convolutional layer that shares the kernel coefficients only
in spatial domains (the yaw and pitch axis) but uses different filters
along the frequency axis (Figure 9). This is because the spectral cor-
relation of an HRTF with its surroundings generally has a different
structure between the lower and higher frequencies as a result of
the frequency dependent diffraction by the subject’s head and ears.

We use two convolutional layers for each channel (for four to-
tal channels). We set the kernel size of each convolution as 3×3×3
(yaw × pitch × frequency axis), and add zero padding to the fre-
quency axis only. For all directions, we set the stride as 1. Thus, the
first convolutional layer transforms each channel of a patch from
5×5×128 to 3×3×128, and the second layer further transforms them
to 1×1×128. Note that we did not add bias parameters to this con-
volutional layer in our experiment.

5.6 Adaptive Layer
Our primary technical contribution is decomposing the individual
and non-individual factors from an HRTF dataset during training.
This technique uses a novel type of neural network layer called an
adaptive layer, which isolates the latent individualities into a tensor

convolve

5

5

128

128

3

3

Frequency or Time

Pitch

Yaw

1 x 1 x 1
3 x 3 x 3

kernel

shared the weights

use different weights

Fig. 9. 3D convolutional layer for HRTF patch.

0
0
0
0
1
0
0
0
0
0
0

W AAAA W’= ・
Individualities (tensor)A weight matrix

s: which subject? (one-hot vector)

common factor (matrix)

AAAB

0
0
0
0
1
0
0
0
0
0
0

Individualities (tensor)

b

s: which subject? (one-hot vector)

=

A bias vector

b’・
common factor (vector)

Fig. 10. An adaptive layer that decomposes the function approximation
into individual feature and non-individual feature. A one-hot vector s
works like switching function depending on the inputted subject’s data.
⊗ denotes tensor product.

from the weight matrix in an unsupervised manner. In addition to
the input vector x , this adaptive layer uses a one-hot vector s during
training and a continuous vector β during runtime as input.

Our adaptive layer is based on tensor factorization that employs
stochastic gradient descent optimization [Koren et al. 2009]. A com-
mon layer in a neural network can be written as a combination of
linear and nonlinear functions:

y = F (x) = f (Linear (x)) = f (W · x + b), (1)

where x ∈ RM and y ∈ RN are the input and output of this layer,
respectively. Linear () denotes a linear layer function of the neural
network.W ∈ RN×M is a matrix, b ∈ RM is a bias vector, and f () is
an arbitrary nonlinear function (e.g., Sigmoid). We decompose this
W and b as follows by introducing a new parameter s (Figure 10):

y = f (Adapt(x , s)) = f (A ⊗3 s ·W ′ · x + B ⊗3 s · b ′), (2)

where s = [s1, ..., sS]T , sk ∈ {0, 1} is a one-hot vector that repre-
sents the subject to which the inputted data belongs. A ∈ RN×M×S ,
and B ∈ RM×M×S are tensors. W ′ ∈ RN×M is a matrix, and
b ′ ∈ RM is a vector. ⊗d is the dot product between the d-mode ex-
pansion of a tensor and vector. We replace the linear layers in the
variational AutoEncoder with this adaptive layer, and iteratively
input the HRTF data of a randomly selected subject and direction

ACM Transactions on Graphics, Vol. 36, No. 6, Article 212. Publication date: November 2017.

Fully Perceptual-Based 3D Spatial Sound Individualization with an Adaptive Variational AutoEncoder • 212:7

! "! #! $! %! &!! &"!
!'(

!

!'(

&

&'(

"

"'(

! "! #! $! %! &!! &"!
"'(

"

&'(

&

!'(

!

!'(

&

&'(

"

"'(

! "! #! $! %! &!! &"!

!'#

!'"

!

!'"

!'#

!'$

!'%

&

&'"

&'#

&'$

(0.3, 0.3, 0.3)
(A, B, C)

Input Functions

AutoEncoder with hidden units blending Ours

A
B
C

(0.3, 0.3, 0.3)

(A, B, C)

(0.5, 0.5, 0)

Amplitude

Element

Fig. 11. A comparison between hidden units interpolation approach
(bottom-left) and our adaptive layers (bottom-right). We trained two net-
works with three nonlinear functions A, B and C (Top). Red, blue, green
lines at bottom two graphs represent the reconstructed functions respec-
tively. Purple lines denote a blending of three functions equally, and black
line denotes a blending of A and B. Hidden units interpolation approach
diminishes the details of each function while our method preserves them.

A
d

a
p

ti
v

e
 L

a
y

e
r

Input Vector: x

(128 dim) + noise

32 dim 16 dim

L
in

e
a
r

L
a
y
e
r

Output Vector: y

Label Vector: s (3 dim)

Minimize: |y-x|2

・

32 dim

A
d

a
p

ti
v

e
 L

a
y

e
r

ReLU ReLU

Fig. 12. AutoEncoder network for validation of our adaptive layer.

during optimization. The adaptive layer gradually inserts the indi-
vidualities of the inputted HRTF patch into the tensor A and B as
if the s becomes the switcher with respect to the selected subject.
In addition, non-individualities that are shared with all subjects are
included in the matrixW ′ and the vector b ′ during stochastic op-
timization.
This adaptive layer allows us to interpolate, emphasize, dimin-

ish, and blend each individuality in the trained dataset by adjusting
the personalization weight vector β ∈ RS at runtime rather than
using s as an additional input. To achieve a similar but not neces-
sarily identical objective, several approaches exist that morph data
into different categorized data continuously by interpolating sev-
eral sampled hidden units extracted with AutoEncoder (e.g., using
procedural modeling of a 3D mesh [Yumer et al. 2015] and con-
trolling and stylizing the human character motion [Holden et al.
2016]). However, these approaches are limited in terms of their
ability to distinguish many nonlinear functions, which is crucial
to solving our target problem. Figure 11 shows a comparison of
three simple functions morphing between hidden units interpola-
tion approach and our approach after performing the same num-
ber of iterations (although this number is unfavorable with our ap-
proach). We use a dual-stackedAutoEncoder as shown in Figure 12)

for our experiment. (Note that for hidden units interpolation, we
replace each adaptive layer with a common fully connected layer.)
The hidden units interpolation approach diminishes each feature
of the functions. This is crucial to solving our target problem be-
cause sharp peaks and dips in the spectral domain are commonly
important specifications for an HRTF. However, our adaptive layer
successfully enables us to reconstruct the details of each feature
and blend them.

In addition, we introduce residual neural networks [He et al. 2015]
into the adaptive layers in the encoder (Figure 19) and decoder (Fig-
ure 20) in order to reduce the training error of deeper neural net-
works. A residual network has a shortcut connection as given by
the following equation.

y = Adapt(x , s) +U · x (3)

whereU denotes a matrix to project the input x into the output
dimension space of y.

6 OPTIMIZING FOR AN INDIVIDUAL USER
After training, we calibrate the HRTF generator (the decoder of the
neural network) to obtain an individualized HRTF for a user. To
this end, we assume the individuality of the optimized HRTF for an
individual user can be expressed as a blending of the trained indi-
vidualities of HRTFs in the dataset in a nonlinear space. Thus, we
now replace the binary subject label s in Eq.(2) with a continuous
personalizationweight β = [β1, ...βS]T which is called personaliza-
tion weight. When this β is used, Adapt(x , s) becomes Adapt(x , β).
Each βi takes [0,1] continuous value while s is the binary one-hot
vector, and is constrained as

∑S
i βi = 1. Finally, the adaptive layer

in this phase is reformulated to

y = Adapt(x , β) = f (A ⊗3 β ·W ′ · x + B ⊗3 β · b ′). (4)

This representation means the optimized individualization trans-
formationmatrices to the user can be expressed asA⊗3β andB⊗3β ,
which are blendings of the individualities of the subjects included
in the trained data set. Similarly, the latent variables z, which are
necessary for generating a new HRTF, are also transformed using
β as:

z̄mean = Zmean (y) · β , z̄var = Zmean (y) · β , (5)

z̄ ∼ N(z̄mean ,
1
2
z̄var), (6)

where Zmean ∈ RL×S , Zvar ∈ RL×S are matrices in which each
column is the pre-computed latent vector (z1mean (y), ...zSmean (y))
and (z1var (y), ...zSvar (y)) that correspond to the subject. Further-
more, zsmean (y) and zsvar (y) are switched by the direction y. Note
that zsmean (y) and zsvar (y) are pre-computed using the trainedmodel
for each direction before this step is performed. L denotes the di-
mensions of the latent variables, andwe use 32 for our experiments.
We use the blended z̄ for the latent variables in the individual fea-
ture vector of the user.

The system optimizes the personalization weight vector β for an
individual user by fixing the other parameters A and B, as well as
the matricesW ′ and bias vectors b ′. This approach has the advan-
tage of dramatically reducing the DoFs of the design variables for

ACM Transactions on Graphics, Vol. 36, No. 6, Article 212. Publication date: November 2017.

212:8 • Kazuhiko Yamamoto, Takeo Igarashi

optimization purposes because it can eliminate the need for mul-
tiple optimization runs when considering all spherical directions.
This means optimizing only a blending vector β covers the individ-
ualities of the user through all directions.

6.1 Optimizing Personalization Weight through User
Feedback

The optimization procedure for the personalization weight β is in-
teractive with the user as described in §4. The user gives relative
scores for two individualization weights βi and βj . With this in-
put, our optimization problem is reformulated into a minimization
problem arg minβ Q(β) where the absolute cost values Q(β) are
computed from the relative scores as described in a later section.
By running this procedure iteratively, the system optimizes the β .

To optimize this black box system, Bayesian optimization
[Brochu et al. 2010] is widely used. However, it requires absolute
evaluation values at each step, which are not immediately avail-
able in our setting. Alternatively, we use a hybrid optimization
scheme [Chen et al. 2009] as an evolutional strategy (we use CMA-
ES [Hansen et al. 2003]) and a gradient descent approach (we use
the BGFS-quasi-Newton method). The optimization procedure is
shown in Algorithm 1. We introduce local Gaussian process regres-
sion (GPR) [Matheron 1963] to accelerate the optimization. This
method estimates the local landscape of the cost function from dis-
crete sampling to obtain the gradients. Figure 13 shows a com-
parison between with and without using gradient information es-
timated by GPR.Weminimize the EggHolder function for this eval-
uation using four conditions (N=8, 32). CMA-ES requires N times
of function evaluation (pair-wise comparisons) at each iteration.
In our target problem, the number of samplings should be small
because the sampling size is proportional to the user’s effort. How-
ever, when the number of samplings N seeded by CMA-ES is few,
the optimization without GPR tends to be trapped by a bad local
minima. As shown in Figure 13, our technique addresses this prob-
lem and converges to a better solution with considerably fewer it-
erations than in previous methods.
At a single iteration during optimization, we first sample N sets

of β samplings β1, ..., βN using common CMA-ES procedure (we
used N = 8). Let P be a set of pairs of indices (1, 2), ..., (N − 1,N).
For each (i, j) ∈ P, the system generates two test signals S(βi),
S(βj), presents the pair side by side to the user, and requests the
user to rate each to generate a relative score. After collecting the
user feedback for all pairs, the system stores N /2 pairs of different
βs and their relative scores. After computing the absolute value
of the cost q for each β samplings using these relative scores, we
estimate the local landscape of the continuous cost function Q(β)
from the discrete q. We represent Q = (q1, ...,qN) as a set of in-
dices of sampling points. Using this estimated cost function, the
system computes the gradients, and updates the covariance matrix
in CMA-ES with quasi-Newton. We detail this procedure in the
next subsection.

6.2 Estimating the Local Landscape of the Cost Function
The system requests that the user provides feedback regarding the
two test signals that correspond to each β pair. The system then

! "! #! $! %! &!! &"!
&!!!

%!!

$!!

#!!

"!!

!

"!!

#!!

#iteration

C
o

s
t

without GPR (N = 8)

without GPR (N = 32)

with GPR (N = 8)

with GPR (N = 32)

Fig. 13. Comparison of convergence curves betweenCMA-ESwith/without
GPR. We use EggHolder function for this evaluation. When the number of
samplings seeded by CMA-ES is fewer, the optimization without GPR fails
to bad local minima while our technique converges to better solution with
much fewer iterations.

ALGORITHM 1: Hybrid CMA-ES assisted by Local GPR

1: Until convergence
2: Generate β samplings using Eq.(14)

and make P test pairs P.
3: Gathering the user feedbacks for each pair.
4: Computes absolute cost q for each β samplings.
5: Estimating the cost function of each sampling using GPR
6: Sort the samplings by the order of the cost

to form the new parent population in CMA-ES
7: The weighted mean y(д)

w is computed
from the new parent population .

8: Quasi-Newton updates of y(д)
w

using the gradients estimated by GPR.
9: Update the covariance matrix C (д) and global step size

in CMA-ES using Chen et al. [2009],
respectively.

10: end

stores relative scores for the β pairs P. Given these relative scores,
we compute the absolute value of the sampling cost q for each sam-
pling β . Our formulation is derived from Koyama et al. [2014],
which estimates the consistent goodness field of high dimensional
parameters through unreliable crowd sourced rating tasks. Their
approach solves a minimization problem with two constraints:

arg min
q

(Erelative (q) + ωEcontinuous (q)) , (7)

whereω > 0 balances the two constraints (we set 5.0). Erelative (q)
is the relative score-based constraint and is represented as

Erelative (q) =
∑

(i, j)∈P
| |qi − qj + di, j | |2, (8)

where di, j denotes the offset determined by the rating between i-th
and j-th samples.

di, j =



1 (relative score = 1),
0.5 (relative score = 2),
0 (relative score = 3),
−0.5 (relative score = 4),
−1 (relative score = 5).

(9)

ACM Transactions on Graphics, Vol. 36, No. 6, Article 212. Publication date: November 2017.

Fully Perceptual-Based 3D Spatial Sound Individualization with an Adaptive Variational AutoEncoder • 212:9

Note that the sign of di, j is opposite to Koyama et al., because our
optimization is a minimization problem. In addition, we enforce
the continuity of the cost function by Econtinuous (q):

Econtinuous (q) =
∑
i ∈Q

| |qi −
∑
i,j

(1 −
|βi − βj |∑

i,k |βi − βk |
)qj | |2. (10)

In this equation, we constrain the absolute costs of two sampling β
to become closer when the distance of the two β diminishes. This
minimization problem Eq.(8) can be solved as a linear least square
problem.
Finally, we estimate the local landscape of the cost functionQ(β)

of the β samplings using multidimensional GPR. We include dis-
crete q samplings obtained by Eq.(8) into GPR. This approximate
function can be used to estimate the gradients, which are required
by the quasi-Newton method as described in the following para-
graph. Note that although GPR is expensive with high dimensions,
it is not a serious problem in our case because the dimension of a
design parameter would not increase to such a high dimension.

6.3 Optimization
We employ a hybrid optimization scheme [Chen et al. 2009] of an
evolutional strategy to minimize Q(β) with respect to β . Note that
we used CMA-ES [Hansen et al. 2003] and a gradient descent ap-
proach (quasi-Newton method.) This hybrid approach first updates
the design parameter using gradient information to search for the
local optima and to escape from bad local optima. The evolutional
strategy aspect generates the offspring (sampling) using two char-
acteristic variation operators, and additive Gaussian mutation al-
ternately.

qд = QuasiNewtonUpdate(zд), (11)

z(д+1) = q(д) + ρ(д)B(д)D(д)y(д), (12)

B(д)D(д)y(д) ∼ N (0,C(д)), (13)

where z(д), д and ρ(д) are the design parameters, iteration step and
a global step size respectively. y(д) ∼ N (0, I) are independent re-
alizations of a normally distributed random vector with zero mean
and covariance matrix equal to the identity matrix I , and C(д) de-
notes the covariance matrix which is computed using q(д) and z(д)
(please see [Chen et al. 2009] for details).
For our initial guess, we first randomly generate the offsprings

y(д) within a range [0, 10] by means of Gaussian distribution, and
then enforce a constraint

∑
y(д) = 1 by dividing all the offsprings

by
∑
y(д). This constraint can be considered as a portion of the user

feedback function, and we can optimize CMA-ES with the common
range [0,10]. In addition, we assume β has a sparsity because most
of optimized HRTF can be represented by a combination of a few
HRTFs included in dataset. Thus, the optimizer randomly drop the
elements under the average to zero in β offsprings of CMA-ES (we
dropped them to 30% probability). We found this constraint reduces
training error.

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Angle [rad]

#iteration

Error

PCA

Optimized

2π

1.0

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

Error

Amplitude

Frequency

Ground Truth

PCA

Ours

Fig. 14. The result of cross validation. Top: convergence curve of each op-
timization. Middle: A comparison of estimated errors between PCA and
our algorithm on the horizontal plane. Bottom: A comparison between the
power spectrum of a target (blue) and optimized result (red).

7 VALIDATION

7.1 Implementation
We implemented our neural network algorithm using C++ (with
AVX2 operations) and CUDA from scratch. Our CPU had an In-
tel Core i7 6900K 3.2 GHz, RAM 128 GB. Our GPU was an NVIDIA
GeforceGTX1080x3. The training consumed approximately 8 hours.
The GUI application for calibration ran on a web browser. This web
application communicates with a GPU server (same machine used
for the training) in the background. The calibration algorithm was
written in Javascript. The front end GUI application sends βs to the
GPU server, and the GPU server generates HRTFs. For our user
study, we used the AKG K240 headphones.

7.2 Cross Validation
Confirming the assumption that the individuality of a user can be
represented accurately by blending some individualities of other
subjects (dataset) is crucial. To confirm this, we applied a cross-
validation test to the dataset. After training our neural network
with the data of 44/45 subjects, we optimized the personalization
weight β to approximate the HRTF data of the remaining subject.
In this experiment, we optimized β using a hybrid CMA-ES. For the
cost function to minimize, we used a squared mean error of power
spectrums and phases between data outputted from the system and
the target (the rest subject’s data). We conducted this cross valida-
tion for all subjects in the CIPIC dataset (45 times). Figure 14 (top)

ACM Transactions on Graphics, Vol. 36, No. 6, Article 212. Publication date: November 2017.

212:10 • Kazuhiko Yamamoto, Takeo Igarashi

Shape 1

Shape 2

Shape 3

Shape 4

New shape to predict

Trained shapes

Obstacle Two microphones

Sound Pressure

A moving sound source

XY plane ZX plane YZ plane

Fig. 15. Synthetic data generation. We conducted 3d acoustic simulation.
Green region represents an obstacle.

shows the convergence curves of several optimizations, and Fig-
ure 14 (middle) shows a comparison of the prediction error between
PCA (32 axis) and our algorithm on the horizontal plane for all the
subject. In addition, Figure 14 (bottom) shows power spectrums of
a subject at two directions between optimized and target HRTFs.
These figures show that all optimizations converge to a similar level
of error, and our system can approximate the HRTF of a new user
by blending the individualities of the trained dataset. Note that we
computed PCA using HRTF at all the directions in this experiment.
Naturally, PCA computed for each direction would provide much
higher score than this result. However, it requires more than ten
thousands of PCA vectors for representing HRTF at all the direc-
tion, which is impractical for our target problem.

7.3 Validation with Synthetic Data
We validated the ability of our algorithm to generate appropriate
HRTFs by using synthetic data. For synthetic data generation, we
simulated an open-space 3D acoustic field around an elliptically
shaped obstacle using the finite difference time domain (FDTD)
method with a perfectly matched layer [Mokhtari et al. 2008, 2010;
Xiao and Liu 2003]. FDTD is an established method used to sim-
ulate an impulse response. We set up a three-meter cubic domain
with 128×128×128 uniform grid as the simulation field. The simu-
lations were conducted using four shapes as obstacles. Each shape
was an oval sphere and had different radii (shape 1: x. 0.2m, y. 0.2m
z. 0.2m, shape 2: x. 0.7m, y. 0.2m z. 0.2m, shape 3: x. 0.2m, y. 0.7m
z. 0.2m, shape 4: x. 0.2m, y. 0.2m z. 0.7m). We recorded the sound
pressure at two opposite sides of each obstacle, modeled on the
ears of humans (Figure 15). A sound source was spherically rotated
around the obstacle from a position of one meter from the center of
the obstacle, and generated an impulse response. We recorded the
first 256 samples of sound pressure from the moment each impulse
was started. These simulated sounds became virtual HRTFs, and
we used them for training data in our algorithm.
We evaluate our method by predicting virtual HRTFs around a

new shape obstacle that is not included in the training data. We
set the new shape as the intermediate shape between shape 1 and
2 (x. 0.45m, y. 0.2m z. 0.2m). Figure 15 shows a comparison of the

errors from the simulated HRTF between our neural network and
simple linear interpolation of simulation 1 and 2 on the horizontal
plane. To generate this HRTF with our system, we set β=(0.5, 0.5,
0, 0). With all directions, our algorithm had fewer errors than did
linear interpolation, which means that our algorithm can generate
appropriate HRTFs. Figure 16: bottom shows a comparison of the
predicted results of power spectrum at two directions when using
both our method and linear interpolation. Apparently, our neural
network can estimate specific peaks and dips than can linear inter-
polation.

7.4 User Study
We employed 20 participants (male:female = 13:7, age: 22∼62) and
optimized HRTFs for them using our system. The experiment con-
sisted of three steps. In the first step, we investigated the best-fitted
CIPIC HRTF for each participant. Here, we conducted a progres-
sive comparison [Takahama et al. 2016] to estimate the best-fitted
HRTF.Therefore, a participant compared 44 pairs of HRTFs because
45 CIPIC HRTFs exist. We showed each participant 44 pairs of test
sounds convolved by two CIPIC HRTFs using the same GUI in our
system (FIgure 3); the participant indicated the best among them.
This task consumed 15∼20 min. The best CIPIC HRTFs were used
in the third step as baselines to evaluate our optimized HRTF. One
might question the robustness of the selection of the best CIPIC
HRTF. We therefore run an informal pilot study to answer the con-
cern. We requested a participant to find the best HRTF six times.
Unfortunately, this was not perfectly repeatable, but we observed
the participant selected same HRTF three times in the six explo-
rations. We can consider this small variation in the result is not

0

0.01

0.02

0.03

0.04

0.05

0.06

-π/2 0

Angle [rad]

π/2 π -π/2

Error

Linear interpolation

Ours

Errors on the horizontal plane

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

! "! #!! #"! $!! $"!
!

#

$

%

&

"

'
()#!

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

Simulation (ground truth)Power spectrum

Squared error

Frequency

Amplitude

front back

Left Right

Fig. 16. The result for predicting a new virtual HRTF. Top row shows the
errors on the horizontal plane of the obstacle. Bottom shows comparisons
of power spectrums between our neural network and simple linear inter-
polation at two directions.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 212. Publication date: November 2017.

Fully Perceptual-Based 3D Spatial Sound Individualization with an Adaptive Variational AutoEncoder • 212:11

P-value < 0.05

0

23

45

68

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

* *
*

*

* *
* *

* *
* * * *

*

*
*

*

*

ID:

Number

CIPIC HRTF

Ours

Age: 23 25 25 29 29 31 32 35 41 43 47 55 62 24 25 27 32 32 39 45

* P-value < 0.05

Gender: M M M M M M M M M M M M M F F F F F F F

Fig. 17. The result of user study. The third column shows how many num-
bers of options are selected as better HRTF for each participant between
best fitted CIPIC HRTF and optimized HRTF by our system.

a critical problem in our experiment because it means that the se-
lected HRTFs are equally good.
We next requested that the participants calibrate their HRTFs

using our system. We ordered each participant to answer at least
100 pairwise comparisons. We did not decide the maximum times
of comparisons and when a participant indicated that he or she
was satisfied, we stopped the calibration. We measured calibration
time and the number of mouse clicks (number of pairwise compar-
isons) for each participant. The participants used the UI described
in §4. The calibration consumed 20∼35 minutes for each partici-
pant. The number of pairwise comparison was 109∼202 times. This
calibration timewasmuch shorter than the actual measurement for
obtaining fitted HRTFs.
After each calibration, we conducted a blind listening test to

compare the HRTFs obtained using our method and the best fitted
CIPIC HRTFs. In this step, we showed each participant 100 pairs of
test sounds. One of the test sounds in each pair was convolved by
an optimized HRTF and the other was convolved by the best CIPIC
HRTF for the participant. The test sound to convolve was randomly
selected from 10 prepared sounds (e.g., short music, helicopter, and
speech) and played 100 times. We requested that each participant
use the same GUI as during the calibration to select one test sound
from each pair that showed better spatialization . We requested
that each participant select only either 1 or 5 from among the op-
tion buttons. The order (A or B) in which test sounds were played
using optimized HRTF and best CIPIC HRTF for each presented
pair was random. We did not inform the participants whether the
selection was the optimized HRTF or the best CIPIC HRTF. Fig-
ure 17 shows the number of times the better HRTF was selected
by each participant. These results show that the optimized HRTFs
were significantly better for almost all participants (p-value<0.05
by Chi-squared test for 18/20 subjects) than were the best CIPIC
HRTFs, indicating that our system successfully optimizes HRTFs
for individual users.

8 LIMITATIONS AND FUTURE WORK
This study presented a fully perceptual-based HRTF optimizer for
individual users using a machine learning technique. However,
several limitations are remained for future work to overcome.
First, it is not clear how well the dataset we used spans the space

of HRTFs. Investigating the variance of HRTFs is an important
future work. Second, evaluating the absolute quality of final re-
sults after calibration is difficult. To analyze this, more user studies

(including the evaluation of azimuth error, elevation error, front-
back reversal rate, and externalization percentage) should be con-
ducted in futurework. Third, although our approach achievesmuch
faster optimization of HRTFs compared to existing methods, ap-
proximately 30 minutes of calibration time is still long. In our user
study, we found almost all the optimized individualization weight
vectors became very sparse. This means a few elements in the vec-
tor are large and the other elements are close to zero. This obser-
vation implies that we can decrease the calibration time by reduc-
ing the dimensions in the individualization weights that are ap-
proaching to zero during the calibration, or using sparse coding
techniques for the individualization weights in future work. Fi-
nally, our approach for training the individualities would not scale
well when the number of subjects in the dataset is much larger. A
possible solution is clustering the subjects beforehand (using some
features of HRTF like principal component vectors), and reducing
the number of “domain” DoFs.

Our adaptive layer could be used in a wide range of other appli-
cations (e.g., from mesh morphing to animation generation). How-
ever, the following problem remains: training time increases in
proportion to different categories of individuality, as the number
of training parameters (tensors at each layer) increase. To address
this, clustering and reducing the DoFs of the extracted individu-
alities in each adaptive layer should be considered. Recent stud-
ies using a Gram matrix at each layer in a DNN for image styling
[Gatys et al. 2016] is expected to be useful in solving this problem.

ACKOWLEDGEMENTS
This work was supported by ACT-I, JST.

REFERENCES
V. R. Algazi, R. O. Duda, D. M. Thompson, and C. Avendano. 2001. The CIPIC HRTF

Database. In IEEE Workshop on Applications of Signal Processing to Audio and Elec-
troacoustics. 99–102.

P. Bilinski, J. Ahrens, M. Thomas, I. Tashev, and J. Platt. 2014. HRTF magnitude syn-
thesis via sparse representation of anthropometric features. In Proc. IEEE Int. Conf.
Acoust., Speech, Signal Proces.

Eric Brochu, Tyson Brochu, and Nando de Freitas. 2010. A Bayesian Interactive Opti-
mizationApproach to Procedural AnimationDesign. In Proc. of ACMSCA. 103–112.

Xuefeng Chen, Xiabi Liu, and Yunde Jia. 2009. Combining Evolution Strategy and
Gradient Descent Method for Discriminative Learning of Bayesian Classifiers. In
Proc. of Genetic and Evolutionary Computation. 507–514.

Djork-Arne Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2016. Fast and Accu-
rate Deep Network Learning by Exponential Linear Units (ELUs). In Proc. of ICLR.

Matthieu Courbariaux and Yoshua Bengio. 2016. BinaryNet: Training Deep Neural
Networks with Weights and Activations Constrained to +1 or－ 1. In arXiv.

R. Duraiswaini, D.N. Zotkin, and N.A. Gumerov. 2004. Interpolation and range extrap-
olation of HRTFs [head related transfer functions]. In ICASSP.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethges. 2016. Image Style Transfer
Using Convolutional Neural Networks. In Proc. of IEEE CVPR.

Felipe Grijalva, Luiz Martini, Siome Goldenstein, and Dinei Florencio. 2014.
Anthropometric-Based Customization of Head-Related Transfer Functions using
Isomap in The Horizontal Plane. In ICASSP.

Nail A. Gumerov, Adam E. O’Donovan, Ramani Duraiswami, and Dmitry N. Zotkin.
2010. Computation of the head-related transfer function via the fast multipole
accelerated boundary element method and its spherical harmonic representation.
In J. Acoust Soc. Am, Vol. 127.

N Hansen, SDMuller, and P Koumoutsakos. 2003. Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES). In
Evolutionary Computation. 1–18.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual Learn-
ing for Image Recognition. In Proc. of CVPR.

Daniel Holden, Jun Saito, and Taku Komura. 2016. A Deep Learning Framework
for Character Motion Synthesis and Editing. ACM Transaction on Graphics (SIG-
GRAPH), 35, 4 (2016), 138:1–138:11.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 212. Publication date: November 2017.

212:12 • Kazuhiko Yamamoto, Takeo Igarashi

Josef Holzl. 2014. A Global Model for HRTF Individualization by Adjustment of Prin-
cipal Component Weights. In Diploma Thesis.

Hongmei Hu, Lin Zhou, Hao Ma, and Zhenyang Wu. 2008. HRTF personalization
based on artificial neural net- work in individual virtual auditory space. In Applied
Acoustics, Vol. 69. 163–172.

Q Huang and Y Fang. 2009. Modeling personalized head- related impulse response
using support vector regressions. In J. Shanghai Univ.

Q. Huang and Q. Zhuang. 2009. HRIR personalisation using support vector regression
in independent feature space. In Electron. Letter, Vol. 45.

PK. Iida, Y. Ishii, , and S. Nishioka. 2014. Personalization of head-related transfer func-
tions in the median plane based on the anthropometry of the listener’s pinnae. In
J. Acoust Soc. Am.

Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In Proc. of ICML.

Craig T. Jin, Pierre Guillon, Nicolas Epain, Reza Zolfaghari, Andre van Schaik, An-
thony I. Tew, Carl Hetherington, and Jonathan Thorpe. 2014. Creating the Sydney
YorkMorphological andAcoustic Recordings of Ears Database. In IEEE Transactions
on Multimedia, Vol. 16.

Y. Kahana and P. A. Nelson. 2007. Boundary element simulations of the transfer func-
tion of human heads and baffled pinnae using accurate geometric model. In Journal
of sound and vibration. 552–579.

Shoken Kaneko, Tsukasa Suenaga, and Satoshi Sekine. 2016. DeepEarNet: individual-
izing spatial audio with photography, ear shape modeling, and neural networks. In
AES Conference on Audio for Virtual and Augmented Reality.

B. F. Katz. 2001. Boundary element method calculation of individual head-related
transfer function. i. rigid model calculation. In J. Acoust Soc. Am.

Kingma and Diederik P. 2014. Semi-supervised learning with deep generative models.
In Advances in Neural Information Processing Systems.

D Kingma and J P Ba. 2014. Adam: A method for stochastic optimization. In CoRR
abs/1412.6980.

Diederik P Kingma and Max Welling. 2014. Auto-encoding variational Bayes. In Proc.
of ICLR.

Yehuda Koren, Rovert Bell, and Chris Volinsky. 2009. Matrix Factorization Techniques
for Recommender Systems. In IEEE Computer,, Vol. 42. IEEE, 30–37.

Yuki Koyama, Daisuke Sakamoto, and Takeo Igarashi. 2014. Crowd-powered parame-
ter analysis for visual design exploration. In Proc. of ACM UIST. 65–74.

E.H.A. Langendijk and A.W. Bronkhorst. 2000. Fidelity of three-dimensional-sound
reproduction using a virtual auditory display. In J. Acoust. Soc. Am.

Yuancheng Luo, DmitryN. Zotkin, Hal Daume, and Ramani Duraiswami. 2013b. Kernel
regression for Head-Related Transfer Function interpolation and spectral extrema
extraction. In ICASSP.

Yuancheng Luo, Dmitry N. Zotkin, and Ramani Duraiswami. 2013a. Virtual AutoEn-
coder Based Recommendation System for Individualizing Head-Related Transfer
Functions. In IEEEWorkshop onApplications of Signal Processing to Audio andAcous-
tics.

G Matheron. 1963. Principles of geostatistics. In Economic Geology. 1246–1266.
Noriyuki Matsunaga and Tatsuya Hirahara. 2010. Reexamination of fast head-related

transfer function measurement by reciprocal method. In J. Acoust Soc. Ja, Vol. 31,
6.

Alok Meshram, Ravish Mehra, and Dinesh Manocha. 2014. Efficient HRTF Computa-
tion using Adaptive Rectangular Decomposition. In AES 55th International Confer-
ence.

J.C Middlebrooks. 1999. Virtual localization improved by scaling non-individualized
external-ear transfer functions in frequency. In J. Acoust. Soc. Am. 106.

P. Mokhtari, H Takemoto, R. Nishimura, and H. Kato. 2008. Computer simulation of
hrtfs for personalization of 3d audio. In In Universal Communication, IEEE. ISUC ’
08. Second International Symposium. 435–440.

P. Mokhtari, H Takemoto, R. Nishimura, and H. Kato. 2010. Computer simulation
of kemar ’s head-related transfer functions: verification with measurements and
acoustic effects of modifying head shape and pinna concavity. In Principles and
Applications of Spatial Hearing. 179–194.

H. Moller., M.F. Sorensen., Jensen C.B, and HammershOi. 1996. Binaural technique:
do we need individual recordings?. In J. Audio Eng. Soc. 44, 451e469.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic
backpropagation and approximate inference in deep generative models. In Proc.
of ICML.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. 2015. Learning Structured Output Rep-
resentation using Deep Conditional Generative Models. In Advances in Neural In-
formation Processing Systems.

Ryusuke Takahama, Toshihiro Kamishima, and Hisashi Kashima. 2016. Progressive
Comparison for Ranking Estimation. In Proc. of IJCAI.

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. 2015.
Learning Spatiotemporal Features with 3D Convolutional Networks. In Proc. of
IEEE ICCV.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Ko-ray Kavukcuoglu. 2016.

Wavenet: A generative model for raw audio. In CoRR abs/1609.03499.
Z. Wang and C. F. Chan. 2013. HRIR customization using common factor decomposi-

tion and joint support vector regression. In Eur. Signal Process. Conf.
E.M Wenzel, D. J Arruda, and D.J Kistler. 1993. Localization using non-individualized

head-related transfer functions. In J. Acoust. Soc. Am. 94.
E.M Wenzel and S.H Foster. 1993. Perceptual consequences of interpolating head-

related transfer functions during spatial synthesis. In Proc. of Workshop on Appli-
cations of Signal Processing to Audio and Acoustics.

T. Xiao and Q. H. Liu. 2003. Finite difference computation of head-related transfer
function for human hearing. In J. Acoust Soc. Am.

M. E Yumer, P Asente, R Mech, and L. B Kara. 2015. Procedural Modeling Using Au-
toencoder Networks. In Proc. of ACM UIST. ACM.

D. N. Zotkin, R. Duraiswami, and L. S. Davis. 2004. Rendering localized spatial audio
in a virtual auditory space. In IEEE Transactions on Multimedia, vol. 6(4).

Dmitry N. Zotkin, Ramani Duraiswami, Elena Grassi, and Nail A. Gumerov. 2006. Fast
head-related transfer function measurement via reciprocity. In J. Acoust Soc. Am,
Vol. 120.

A VARIATIONAL AUTOENCODER
Our network architecture is based on variational AutoEncoder

[Kingma and Welling 2014; Rezende et al. 2014] Variational AutoEn-
coder is a generative model of a deep neural network. We used con-
ditional variational AutoEncoder [Kingma and P 2014; Sohn et al.
2015]. It consists of a decoder pθ (x ,y |z) and the variational poste-
rior encoderqφ (z |x ,y), wherex ,y, and zare input, description label,
and latent variable respectively, and produces the parameters of
each distribution after a series of non-linear transformations. Both
the model (θ) and variational (φ) parameters will be jointly opti-
mized with stochastic gradient variational Bayes (SGVB) algorithm
according to a lower bound on the log-likelihood. This parametriza-
tion allows us to capture most of the salient information of x and
y in the embedding z. By choosing a Gaussian posterior qφ (z |x ,y)
and standard isotropic Gaussian prior p(z) ∼ N (0, I) we can obtain
the following lower bound.

loд pθ (y |x) = −KL(qφ (z |x)| |pθ (z |x))
+Eqφ (z |x)

[
−loд qφ (z |x) + loд pθ (x , z)

]
≥ −KL(qφ (z |x ,y)| |pθ (z)) + Eqφ (z |x ,y) [loд pθ (y |x , z)] , (14)

and the empirical lower bound is written as

loд pθ (y |x) ≥ −KL(qφ (z |x ,y)| |pθ (z)) +
1
L

L∑
l=1

loд pθ (y |x , z(l)), (15)

where KL() denotes Kullback-Leibler divergence. Finally, the total
loss to minimize can be formulated as

L = |x ′ − x |2 − 1
2Mean

(∑(1 + zvar − z2mean − ezvar)
)
, (16)

whereMean() represents the mean average. Note that we use only
the HRTF data at the sample direction (the center position in a
patch although we sampled 5×5 directions for input) for original
input x becomes a 512 dimensions vector.

B DNN ARCHITECTURE
Figure 18, Figure 19 and Figure 20 show each block of our neural
network. In these figures, red arrows denotes adaptive layers de-
scribed in §5.6, and blue arrows denotes common linear layer. We
divide the HRTF patch x by each channel and input them separately
as the power spectrum channels of LR xf l and xf r and the time
signals of LR xpl and xpr . Similar to the conventional variational

ACM Transactions on Graphics, Vol. 36, No. 6, Article 212. Publication date: November 2017.

Fully Perceptual-Based 3D Spatial Sound Individualization with an Adaptive Variational AutoEncoder • 212:13

5 x 5 x 128

512

x1 (L-ch power spectrum patch)

5 x 5 x 128

x2 (R-ch power spectrum patch)

5 x 5 x 128

x3 (L-ch time signal patch)

5 x 5 x 128

x4 (R-ch time signal patch)

3 x 3 x 128

3 x 3 x 128

3 x 3 x 128

3 x 3 x 128 128

128

128

128

Merge

256

3D convolutions

xfl1

xfr1

xpl1

xpr1

xfl2

xfr2

ELU

+
xpl2

xpr2

x1

x0

128

y (sample direction)

128

256

14

y1

Fig. 18. 3D convolutions block architecture.

AutoEncoder, the architecture has an encoder (Figure 19) and a de-
coder (Figure 20). The encoder extracts latent variables from the
input, and the decoder outputs reconstructed HRTFs in the format
described in the previous section from the sampled latent variables.
Figure 21 shows the equations, where ELU () denotes an expo-

nential linear unit [Clevert et al. 2016]. Conv() is the 3D HRTF
patch convolution andAdapt() represents our adaptive layer (which
we describe in a later section). The middle of the network has feed
forward connections that represent residual networks. Merдe()
joints the four channels of vectors into a single vector. At the en-
coder, the system first decomposes the HRTF patch into four chan-
nels (left power spectrum xf l , right power spectrum xf r , left time
signal xpl , and right time signal xpr), and inputs each channel into
independent convolutional layers. After applying the convolutions,
the system merges the four channels into a single vector as x0 and
transforms it into x1 by applying an adaptive layer in order to re-
duce the number of dimensions. This thus becomes an input vector
of the variational AutoEncoder. Using these two vectors, which
represent a sample direction and subject label, respectively, as well
as the input vector after the convolutions, the encoder of our varia-
tional AutoEncoder generates the mean zmean and variation zvar
vectors of a Gaussian distribution (latent variables in Figure 20).
The latent variables can be generated from this Gaussian distribu-
tion zp ∼ N(zmean ,

1
2zvar). At the decoder, the system uses the

two vectors y and s that match the encoder and latent variables
zp , and reconstructs the center HRTFs of the input HRTF patches
of the four channels (L-ch power spectrum, R-ch power spectrum,
L-ch time signal, and R-ch time signal) through residual adaptive
network layers.

For optimization, we use the mini-batch Adam algorithm
[Kingma and Ba 2014] with mini-batch size 16. We set the num-
bers of the layer N as 4. In addition, we insert the batch normaliza-
tion layers [Ioffe and Szegedy 2015] before all nonlinear units (ELU
function).

Adaptive ResNet × 4 Layers

128

Subject label

128

32

32

qmean

qvar

…

128

+

128

+

64 64 32

45s:

z0

zN

{Personalization Weight β (at runtime)}

Latent Variables

z ~ N(qmean, qvar/2)

Fig. 19. The encoder block extracts latent variables from input.

y (sample direction)

32

256

128 x 64

128 x 64

128 x 64

128 x 64

L-ch power spectrum

R-ch power spectrum

L-ch time signal

R-ch time signal

128 x 256

128 x 256

128 x 256

128 x 256

32

y2

32

+

Adaptive ResNet × 4 Layers

32 64

…

64

+

128

+

128 128

h0

ELU

h1

x’fl0

x’fr0

x’pl0

x’pr0

x’fl1

x’fr1

x’pl1

x’pl1

26

Subject label
45s:

{Personalization Weight β (at runtime)}

z: Latent Variables

Fig. 20. The decoder block generates reconstructed HRTF from latent vari-
ables.

Convolution 1

Convolution 2

Merge 4 channels into a vector

Direction inputp

Decoder inputp

Adaptive ResNet

Channel reconstruction

Decoder output

Merge 4 channels into a vector

Direction input

Encoder input

Adaptive ResNet

Latent variables (output of encoder)

p

Encoder Decoder

Fig. 21. The equations of our DNN.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 212. Publication date: November 2017.

